Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2016 | 63 | 3 | 595-600

Article title

Oxalic acid degradation by a novel fungal oxalate oxidase from Abortiporus biennis

Content

Title variants

Languages of publication

EN

Abstracts

EN
Oxalate oxidase was identified in mycelial extracts of a basidiomycete Abortiporus biennis strain. Intracellular enzyme activity was detected only after prior lowering of the pH value of the fungal cultures by using oxalic or hydrochloric acids. This enzyme was purified using size exclusion chromatography (Sephadex G-25) and ion-exchange chromatography (DEAE-Sepharose). This enzyme exhibited optimum activity at pH 2 when incubated at 40°C, and the optimum temperature was established at 60°C. Among the tested organic acids, this enzyme exhibited specificity only towards oxalic acid. Molecular mass was calculated as 58 kDa. The values of Km for oxalate and Vmax for the enzyme reaction were 0.015 M and 30 mmol min-1, respectively.

Year

Volume

63

Issue

3

Pages

595-600

Physical description

Dates

published
2016
received
2016-03-04
revised
2016-04-25
accepted
2016-05-20
(unknown)
2016-06-23

Contributors

author
  • Department of Biochemistry, Maria Curie-Skłodowska University, Lublin, Poland
  • Department of Genetics and Microbiology, Maria Curie-Skłodowska University, Lublin, Poland
author
  • Department of Genetics and Microbiology, Maria Curie-Skłodowska University, Lublin, Poland
  • Department of Biochemistry, Maria Curie-Skłodowska University, Lublin, Poland

References

  • Aguilar C, Urzúa U, Koenig C, Vicuňa R (1999) Oxalate oxidase from Ceriporiopsis subvermispora: biochemical and cytochemical study. Arch Biochem Biophys 366: 275-282.
  • Azam M, Kesarwani M, Chakraborty S, Natarajan K, Datta A (2002) Cloning and characterization of the 5'-flanking region of the oxalate decarboxylase gene from Flammulina velutipes. Biochem J 367: 67-75.
  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248-254.
  • Burrell MR, Just VJ, Bowater L, Fairhurst SA, Requena L, Lawson DM, Bornemann S (2007) Oxalate decarboxylase and oxalate oxidase activities can be interchanged with a specificity switch of up to 282 000 by mutating an active site lid. Biochemistry 46: 12327-12336. doi: 10.1021/bi700947s.
  • Chen J, Preston BP, Zimmerman MJ (1997) Analysis of organic acids in industrial samples. Comparison of capillary electrophoresis and ion chromatography. J Chromatogr A 781: 205-213. doi: 10.1016/S0021-9673(97)00374-9.
  • Dahiya T, Yadav S, Chauhan N, Handa P, Pundir CS (2010) Strawberry fruit oxalate oxidase - detection, purification, characterization and physiological role. J Plant Biochem Biotechnol 19: 247-250. doi: 10.1007/BF03263349.
  • Dunwell JM, Khuri S, Gane PJ (2000) Microbial relatives of the seed storage proteins of higher plants: conservation of structure and diversification of function during evolution of the cupin superfamily. Microbiol Mol Biol Rev 64: 153-179. doi: 10.1128/MMBR.64.1.153-179.2000.
  • Escutia MR, Bowater L, Edwards A, Bottrill AR, Burrell MR, Polanco R, Vicuna R, Bornemann S (2005) Cloning and sequencing of two Ceriporiopsis subvermispora bicupin oxalate oxidase allelic isoforms: implications for the reaction specificity of oxalate oxidase and decarboxylases. Appl Environ Microbiol 71: 3608-3616. doi: 10.1128/AEM.71.7.3608-3616.2005.
  • Foster J, Kim HU, Nakata PA, Browse J (2012) A previously unknown oxalyl-CoA synthetase is important for oxalate catabolism in Arabidopsis. The Plant Cell 24: 1217-1229. doi: 10.1105/tpc.112.096032.
  • Gadd GM (2007) Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol Res 111: 3-49. doi: 10.1016/j.mycres.2006.12.001.
  • Goyal L, Thakur M, Pundir CS (1999) Purification and properties of a membrane bound oxalate oxidase from Amaranthus leaves. Plant Sci 142: 21-28.
  • Grąz M, Jarosz-Wilkołazka A, Pawlikowska-Pawlęga B (2009) Abortiporus biennis tolerance to insoluble metal oxides: oxalate secretion, oxalate oxidase activity, and mycelial morphology. Biometals 22: 401-410. DOI 10.1007/s10534-008-9176-1.
  • Hastrup ACS, Green III F, Lebow PK, Jensen B (2012) Enzymatic oxalic acid regulation correlated with wood degradation in four brown-rot fungi. Int Biodeterior Biodegradation 75: 109-114. doi: 10.1016/j.ibiod.2012.05.030.
  • Hegedus DD, Rimmer SR (2005) Sclerotinia sclerotiorum: when ''to be or not to be'' a pathogen? FEMS Microbiol Lett 251: 177-184. doi: 10.1016/j.femsle.2005.07.040.
  • Hofrichter M (2002) Review: lignin conversion by manganese peroxidase (MnP). Enzyme Microb Technol 30: 454-466. doi: 10.1016/S0141-0229(01)00528-2.
  • Hu Y, Guo Z (2009) Purification and characterization of oxalate oxidase from wheat seedlings. Acta Physiol Plant 31: 229-235. doi: 10.1007/s11738-008-0222-y.
  • Jarosz-Wilkołazka A, Grąz M, Braha B, Menge S, Schlosser D, Krauss GJ (2006) Species-specific Cd-stress response in the white rot basidiomycetes Abortiporus biennis and Cerrena unicolor. Biometals 19: 39-49. DOI 10.1007/s10534-005-4599-4.
  • Jarosz-Wilkołazka A, Grąz M (2006) Organic acids production by white rot basidiomycetes in the presence of metallic oxides. Can J Microbiol 52: 779-785. doi: 10.1139/W06-032.
  • Jarosz-Wilkołazka A, Luterek J, Olszewska A (2008) Catalytic activity of versatile peroxidase from Bjerkandera fumosa at different pH. Biocatal Biotransfor 26: 280-287. doi: 10.1080/10242420701830082.
  • Jaszek M, Grzywnowicz K, Malarczyk E, Leonowicz A (2006) Enhanced extracellular laccase activity as a part of the response system of white rot fungi: Trametes versicolor and Abortiporus bennis to paraquat-caused oxidative stress conditions. Pest Biochem Physiol 85: 147-154. doi: 10.1016/j.pestbp.2006.01.002.
  • Kaneko S, Yoshitake K, Itakura S, Tanaka H, Enoki A (2005) Relationship between production of hydroxyl radicals and degradation of wood, crystalline cellulose, and lignin-related compound or accumulation of oxalic acid in cultures of brown-rot fungi. J Wood Sci 51: 262-269. DOI 10.1007/s10086-004-0641-3.
  • Kesarwani M, Azam M, Natarajan K, Mehta A, Datta A (2000) Oxalate decarboxylase from Collybia velutipes. J Biol Chem 275: 7230-7238.
  • Kotsira VP, Clonis YD (1997) Oxalate oxidase from barley roots: purification to homogeneity and study of some molecular, catalytic, and binding properties. Arch Biochem Biophys 340: 239-249.
  • Leonowicz A, Matuszewska A, Luterek J, Ziegenhagen D, Wojtaś-Wasilewska M, Cho NS, Hofrichter M, Rogalski J (1999) Biodegradation of lignin by white rot fungi. Fungal Genet Biol 27: 175-185. doi: 10.1006/fgbi.1999.1150.
  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685. doi: 10.1038/227680a0.
  • Mäkelä M, Galkin S, Hatakka A, Lundell T (2002) Production of organic acids and oxalate decarboxylase in lignin-degrading white rot fungi. Enzyme Microb Technol 30: 542-549. doi: 10.1016/S0141-0229(02)00012-1.
  • Mäkelä MR, Hildén K, Hatakka A, Lundell TK (2009) Oxalate decarboxylase of the white-rot fungus Dichomitus squalens demonstrates a novel enzyme primary structure and non-induced expression on wood and in liquid cultures. Microbiology 155: 2726-2738. doi: 10.1099/mic.0.028860-0.
  • Mäkelä MR, Hildén K, Lundell TK (2010) Oxalate decarboxylase: biotechnological update and prevalence of the enzyme in filamentous fungi. Appl Microbiol Biotechnol 87: 801-814. doi: 10.1007/s00253-010-2650-z.
  • Moussatche P, Angerhofer A, Imaram W, Hoffer E, Uberto K, Brooks C, Bruce C, Sledge D, Richards NG, Moomaw EW (2011) Characterization of Ceriporiopsis subvermispora bicupin oxalate oxidase expressed in Pichia pastoris. Arch Biochem Biophys 509: 100-107. doi: 10.1016/j.abb.2011.01.022.
  • Perez FJ, Rubio S (2006) An improved chemiluminescence method for hydrogen peroxide determination in plant tissues. Plant Growth Reg 48: 89-95. doi: 10.1007/s10725-005-5089-y.
  • Polak J, Jarosz-Wilkołazka A (2012) Fungal laccases as green catalysts for dye synthesis. Proc Biochem 47: 1295-1307. doi: 10.1016/j.procbio.2012.05.006.
  • Pundir CS, Nath R (1984) Occurrence of oxalate oxidase in Sorghum leaves. Phytochemistry 23: 1871-1874. doi: 10.1016/S0031-9422(00)84932-8.
  • Sjöde A, Winestrand S, Nilvebrant NO, Jönsson LJ (2008) Enzyme-based control of oxalic acid in the pulp and paper industry. Enzyme Microb Technol 43: 78-83. doi: 10.1016/j.enzmictec.2007.11.014.
  • Svedružić D, Jónsson S, Toyota CG, Reinhardt LA, Ricagno S, Lindqvist Y, Richards NG (2005) The enzymes of oxalate metabolism: unexpected structures and mechanisms. Arch Biochem Biophys 433: 176-192. doi: 10.1016/j.abb.2004.08.032.
  • Vaisey EB, Cheldelin VH, Newburgh RW (1961) Oxalate oxidation by an obligately parasitic fungus Tilletia contraversa. Arch Biochem Biophys 95: 66-69.
  • Vuletić M, Šukalović VH (2000) Characterization of cell wall oxalate oxidase from maize roots. Plant Sci 157: 257-263.
  • Zhu CX, Hong F (2010) Induction of an oxalate decarboxylase in the filamentous fungus Trametes versicolor by addition of inorganic acids. Appl Biochem Biotechnol 160: 655-664. doi: 10.1007/s12010-009-8571-6.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-abpv63p595kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.