Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 62 | 2 | 221-227

Article title

Characterization of ATPase activity of the AAA ARC from Bifidobacterium longum subsp. infantis

Content

Title variants

Languages of publication

EN

Abstracts

EN
Bifidobacteria are considered to be probiotics that exist in the large intestine and are helpful to maintain human health. Oral administration of bifidobacteria may be effective in improving the intestinal flora and environment, stimulating the immune response and possibly preventing cancer. However, for consistent and positive results, further well-controlled studies are urgently needed to describe the basic mechanisms of this microorganism. Analysis of the proteasome-lacking Bifidobacterium longum genome reveals that it possesses a gene, IPR003593 AAA ATPase core, which codes a 56 kDa protein containing one AAA ATPase domain. Phylogenetic classification made by CLANS, positioned this sequence into the ARC divergent branch of the AAA ATPase family of proteins. N-terminal analysis of the sequence indicates this protein is closely related to other ATPases such as the Rhodococcus erythropolis ARC, Archaeoglobus fulgidus PAN, Mycobacterium tuberculosis Mpa and the human proteasomal Rpt1 subunit. This gene was cloned, the full-length recombinant protein was overexpressed in Escherichia coli, purified as a high-molecular size complex and named Bl-ARC. Enzymatic characterization showed that Bl-ARC ATPase is active, Mg+2-dependent and sensitive to N-ethylmaleimide. Gene organization positions bl-arc in a region flanked by a cluster of genes that includes pup, dop and pafA genes. These findings point to a possible function as a chaperone in the degradation pathway via pupylation.

Year

Volume

62

Issue

2

Pages

221-227

Physical description

Dates

published
2015
received
2014-10-15
revised
2015-05-08
accepted
2015-05-11
(unknown)
2015-05-26

Contributors

  • División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, A.C. (IPICYT), CP 78216 San Luis Potosí, México
  • División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, A.C. (IPICYT), CP 78216 San Luis Potosí, México
  • División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, A.C. (IPICYT), CP 78216 San Luis Potosí, México

References

  • Bar-Nun S, Glickman MH (2012) Proteasomal AAA-ATPases: structure and function. Biochim biophys acta 1823: 67-82.
  • Barandun J, Delley CL, Weber-Ban E (2012) The pupylation pathway and its role in mycobacteria. BMC Biol 10: 95.
  • Benaroudj N, Zwickl P, Seemuller E, Baumeister W, Goldberg AL (2003) ATP hydrolysis by the proteasome regulatory complex PAN serves multiple functions in protein degradation. Mol Cell 11: 69-78.
  • Briskin DP, Poole RJ (1983) Role of magnesium in the plasma-membrane ATPase of red beet. Plant Physiol 71: 969-971.
  • Carrera AC, Alexandrov K, Roberts TM (1993) The conserved lysine of the catalytic domain of protein-kinases is actively involved in the phosphotransfer reaction and not required for anchoring Atp. Proc Natl Acad Sci USA 90: 442-446.
  • Cerda-Maira FA, Pearce MJ, Fuortes M, Bishai WR, Hubbard SR, Darwin KH (2010) Molecular analysis of the prokaryotic ubiquitin-like protein (Pup) conjugation pathway in Mycobacterium tuberculosis. Mol Microbiol 77: 1123-1135.
  • Delcenserie V, Lessard MH, LaPointe G, Roy D (2008) Genome comparison of Bifidobacterium longum strains NCC2705 and CRC-002 using suppression subtractive hybridization. FEMS Microbiol Lett 280: 50-56.
  • DeMartino GN (2009) PUPylation: something old, something new, something borrowed, something Glu. Trends Biochem Sci 34: 155-158.
  • Djuranovic S, Hartmann MD, Habeck M, Ursinus A, Zwickl P, Martin J, Lupas AN, Zeth K (2009) Structure and activity of the N-terminal substrate recognition domains in proteasomal ATPases. Mol Cell 34: 580-590.
  • Doyle SM, Genest O, Wickner S (2013) Protein rescue from aggregates by powerful molecular chaperone machines. Nat Rev Mol Cell Biol 14: 617-629.
  • Fallingborg J (1999) Intraluminal pH of the human gastrointestinal tract. Dan Med Bull 46: 183-196.
  • Frickey T, Lupas A (2004) CLANS: a Java application for visualizing protein families based on pairwise similarity. Bioinformatics 20: 3702-3704.
  • Frohlich KU, Fries HW, Peters JM, Mecke D (1995) The ATPase activity of purified CDC48p from Saccharomyces cerevisiae shows complex dependence on ATP-, ADP-, and NADH-concentrations and is completely inhibited by NEM. Biochim Biophys Acta 1253: 25-32.
  • Guy L, Karamata D, Moreillon P, Roten CA (2005) Genometrics as an essential tool for the assembly of whole genome sequences: the example of the chromosome of Bifidobacterium longum NCC2705. BMC Microbiol 5: 60.
  • Hao Y, Huang D, Guo H, Xiao M, An H, Zhao L, Zuo F, Zhang B, Hu S, Song S, Chen S, Ren F (2011) Complete genome sequence of Bifidobacterium longum subsp. longum BBMN68, a new strain from a healthy chinese centenarian. J Bacteriol 193: 787-788.
  • Hiramatsu Y, Hosono A, Konno T, Nakanishi Y, Muto M, Suyama A, Hachimura S, Sato R, Takahashi K, Kaminogawa S (2011) Orally administered Bifidobacterium triggers immune responses following capture by CD11c(+) cells in Peyer's patches and cecal patches. Cytotechnology 63: 307-317.
  • Kress W, Maglica Z, Weber-Ban E (2009) Clp chaperone-proteases: structure and function. Res Microbiol 160: 618-628.
  • Lanzetta PA, Alvarez LJ, Reinach PS, Candia OA (1979) An improved assay for nanomole amounts of inorganic phosphate. Anal Biochem 100: 95-97.
  • Lee JH, O'Sullivan DJ (2010) Genomic insights into Bifidobacteria. Microbiol Mol Biol Rev 74: 378-416.
  • Liu QY, Summers WC (1988) Site-directed mutagenesis of a nucleotide-binding domain in Hsv-1 thymidine kinase-effects on catalytic activity. Virology 163: 638-642.
  • Marteau P, Pochart P, Flourie B, Pellier P, Santos L, Desjeux JF, Rambaud JC (1990) Effect of chronic ingestion of a fermented dairy product containing Lactobacillus acidophilus and Bifidobacterium bifidum on metabolic activities of the colonic flora in humans. Am J Clin Nutr 52: 685-688.
  • Meng EC, Pettersen EF, Couch GS, Huang CC, Ferrin TE (2006) Tools for integrated sequence-structure analysis with UCSF Chimera. BMC Bioinformatics 7: 339.
  • Ogura T, Wilkinson AJ (2001) AAA+ superfamily ATPases: common structure - diverse function. Genes Cells 6: 575-597.
  • Olivares M, Laparra M, Sanz Y (2011) Influence of Bifidobacterium longum CECT 7347 and gliadin peptides on intestinal epithelial cell proteome. J Agric Food Chem 59: 7666-7671.
  • Osman N, Adawi D, Molin G, Ahrne S, Berggren A, Jeppsson B (2006) Bifidobacterium infantis strains with and without a combination of oligofructose and inulin (OFI) attenuate inflammation in DSS-induced colitis in rats. BMC Gastroenterol 6: 31.
  • Reddy BS (1999) Possible mechanisms by which pro- and prebiotics influence colon carcinogenesis and tumor growth. J Nutr 129: 1478S-1482S.
  • Reuter CJ, Kaczowka SJ, Maupin-Furlow JA (2004) Differential regulation of the PanA and PanB proteasome-activating nucleotidase and 20S proteasomal proteins of the haloarchaeon Haloferax volcanii. J Bacteriol 186: 7763-7772.
  • Roy A, Kucukural A, Zhang Y (2010) I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 5: 725-738.
  • Roy A, Yang J, Zhang Y (2012) COFACTOR: an accurate comparative algorithm for structure-based protein function annotation. Nucleic Acids Res 40: W471-W477.
  • Ruiz L, Coute Y, Sanchez B, de los Reyes-Gavilan CG, Sanchez JC, Margolles A (2009) The cell-envelope proteome of Bifidobacterium longum in an in vitro bile environment. Microbiology 155: 957-967.
  • Samanovic MI, Li H, Darwin KH (2013) The Pup-proteasome system of Mycobacterium tuberculosis. Subcell Biochem 66: 267-295.
  • Santos L, Frickey T, Peters J, Baumeister W, Lupas A, Zwickl P (2004) Thermoplasma acidophilum TAA43 is an archaeal member of the eukaryotic meiotic branch of AAA ATPases. Biol Chem 385: 1105-1111.
  • Schell MA, Karmirantzou M, Snel B, Vilanova D, Berger B, Pessi G, Zwahlen MC, Desiere F, Bork P, Delley M, Pridmore RD, Arigoni F (2002) The genome sequence of Bifidobacterium longum reflects its adaptation to the human gastrointestinal tract. Proc Natl Acad Sci USA 99: 14422-14427.
  • Sela DA, Chapman J, Adeuya A, Kim JH, Chen F, Whitehead TR, Lapidus A, Rokhsar DS, Lebrilla CB, German JB, Price NP, Richardson PM, Mills DA (2008) The genome sequence of Bifidobacterium longum subsp. infantis reveals adaptations for milk utilization within the infant microbiome. Proc Natl Acad Sci USA 105: 18964-18969.
  • Shkoporov AN, Efimov BA, Khokhlova EV, Chaplin AV, Kafarskaya LI, Durkin AS, McCorrison J, Torralba M, Gillis M, Sutton G, Weibel DB, Nelson KE, Smeianov VV (2013) Draft genome sequences of two pairs of human intestinal Bifidobacterium longum subsp. longum Strains, 44B and 1-6B and 35B and 2-2B, consecutively isolated from two children after a 5-year time period. Genome Announc 1: e00234-13.
  • Smith DM, Kafri G, Cheng Y, Ng D, Walz T, Goldberg AL (2005) ATP binding to PAN or the 26S ATPases causes association with the 20S proteasome, gate opening, and translocation of unfolded proteins. Mol Cell 20: 687-698.
  • Striebel F, Imkamp F, Sutter M, Steiner M, Mamedov A, Weber-Ban E (2009a) Bacterial ubiquitin-like modifier Pup is deamidated and conjugated to substrates by distinct but homologous enzymes. Nat Struct Mol Biol 16: 647-651.
  • Striebel F, Kress W, Weber-Ban E (2009b) Controlled destruction: AAA+ ATPases in protein degradation from bacteria to eukaryotes. Curr Opin Struct Biol 19: 209-217.
  • Sugimoto S, Sonomoto K (2011) Quality control of protein structure in lactic acid bacteria. In Lactic Acid Bacteria and Bifidobacteria: Current Progress in Advanced Research, pp 143-154. Caister Academic Press, Hokkaido, Japan.
  • Sun Z, Bo X, He X, Jiang Z, Wang F, Zhao H, Liu D, Yuan J (2008) Comparative proteome analysis of Bifidobacterium longum NCC2705 grown on fructose and glucose. Sheng Wu Gong Cheng Xue Bao 24: 1401-1406.
  • Sutter M, Striebel F, Damberger FF, Allain FH, Weber-Ban E (2009) A distinct structural region of the prokaryotic ubiquitin-like protein (Pup) is recognized by the N-terminal domain of the proteasomal ATPase Mpa. FEBS Lett 583: 3151-3157.
  • Tanaka K (2009) The proteasome: overview of structure and functions. Proc Jpn Acad Ser B Phys Biol Sci 85: 12-36.
  • Tissier H (1900) Recherches sur la flore intestinale normale et pathologique du nourisson. These de Paris:1-253.
  • Tomoyasu T, Yuki T, Morimura S, Mori H, Yamanaka K, Niki H, Hiraga S, Ogura T (1993) The Escherichia coli FtsH protein is a prokaryotic member of a protein family of putative ATPases involved in membrane functions, cell cycle control, and gene expression. J Bacteriol 175: 1344-1351.
  • Vale RD (2000) AAA proteins. Lords of the ring. J Cell Biol 150: F13-F19.
  • Wang T, Li H, Lin G, Tang C, Li D, Nathan C, Darwin KH (2009) Structural insights on the Mycobacterium tuberculosis proteasomal ATPase Mpa. Structure 17: 1377-1385.
  • Wilson HL, Ou MS, Aldrich HC, Maupin-Furlow J (2000) Biochemical and physical properties of the Methanococcus jannaschii 20S proteasome and PAN, a homolog of the ATPase (Rpt) subunits of the eucaryal 26S proteasome. J Bacteriol 182: 1680-1692.
  • Wolf S, Nagy I, Lupas A, Pfeifer G, Cejka Z, Muller SA, Engel A, De Mot R, Baumeister W (1998) Characterization of ARC, a divergent member of the AAA ATPase family from Rhodococcus erythropolis. J Mol Biol 277: 13-25.
  • Xu JR, Zhang Y (2010) How significant is a protein structure similarity with TM-score=0.5? Bioinformatics 26: 889-895.
  • Yu H, Liu L, Chang Z, Wang S, Wen B, Yin P, Liu D, Chen B, Zhang J (2013) Genome sequence of the bacterium Bifidobacterium longum strain CMCC P0001, a probiotic strain used for treating gastrointestinal disease. Genome Announc 1: e00716-13.
  • Yuan J, Zhu L, Liu X, Li T, Zhang Y, Ying T, Wang B, Wang J, Dong H, Feng E, Li Q, Wang J, Wang H, Wei K, Zhang X, Huang C, Huang P, Huang L, Zeng M, Wang H (2006) A proteome reference map and proteomic analysis of Bifidobacterium longum NCC2705. Mol Cell Proteomics 5: 1105-1118.
  • Zhang X, Stoffels K, Wurzbacher S, Schoofs G, Pfeifer G, Banerjee T, Parret AH, Baumeister W, De Mot R, Zwickl P (2004) The N-terminal coiled coil of the Rhodococcus erythropolis ARC AAA ATPase is neither necessary for oligomerization nor nucleotide hydrolysis. J Struct Biol 146: 155-165.
  • Zhang Y (2008) I-TASSER server for protein 3D structure prediction. BMC bioinformatics 9: 40.
  • Zhao J, Cheung PC (2013) Comparative proteome analysis of Bifidobacterium longum subsp. infantis grown on beta-glucans from different sources and a model for their utilization. J Agric Food Chem 61: 4360-4370.
  • Zhurina D, Dudnik A, Waidmann MS, Grimm V, Westermann C, Breitinger KJ, Yuan J, van Sinderen D, Riedel CU (2013) High-quality draft genome sequence of Bifidobacterium longum E18, isolated from a healthy adult. Genome Announc 1: e01084-13.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-abpv62p221kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.