Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2001 | 48 | 4 | 1091-1099

Article title

Methods of peptide conformation studies.

Content

Title variants

Languages of publication

EN

Abstracts

EN
In solution most of the peptides assume multiple flexible conformations. Determination of the dominant conformers and evaluation of their populations is the aim of peptide conformation studies, in which theoretical and experimental methods play complementary roles. Molecular dynamics or Monte Carlo methods are quite effective in searching the conformational space accessible to a peptide but they are not able to estimate, precisely enough, the populations of various conformations. Therefore, they must be supplemented by experimental data. In this paper, a short review of the experimental methods, most widely used in peptide conformational studies, is presented. Among them NMR plays the leading role. Valuable information is also obtained from hydrogen exchange, fluorescence resonance energy transfer, and circular dichroism measurements. The advantages and shortcomings of these methods are discussed.

Year

Volume

48

Issue

4

Pages

1091-1099

Physical description

Dates

published
2001
received
2001-10-24
accepted
2001-11-14

Contributors

  • Institute of Biochemistry and Biophysics, Polish Academy of Sciences, A. Pawińskiego 5A, 02-106 Warszawa, Poland

References

  • 1. Dyson, H.J. & Wright, P.E. (1993) Peptide conformation and protein folding. Curr. Opin. Struct. Biol. 3, 60-65.
  • 2. Pauling, L., Corey, R.B. & Branson, H.R. (1951) The structure of proteins: Two hydrogen-bonded helical configurations of the polypeptide chain. Proc. Natl. Acad. Sci. U.S.A. 37, 205-211.
  • 3. Pauling, L. & Corey, R.B. (1951) Configurations of polypeptide chains with favoured orientations around single bonds: Two new pleated sheets. Proc. Natl. Acad. Sci. U.S.A. 37, 729-740.
  • 4. Chakrabartty, A. & Baldwin, R.L. (1995) Stability of α-helice. Adv. Protein Chem. 46, 141-176.
  • 5. Soto, C. (2001) Protein misfolding and disease; protein refolding therapy. FEBS Lett. 498, 204-207.
  • 6. Serpell, L.C. (2000) Alzheimer’s amyloid fibrils: structure and assembly. Biochim. Biophys. Acta 1502, 16-30.
  • 7. Ripka, A.S. & Rich, D.H. (1998) Peptomimetic design. Curr. Opin. Chem. Biol. 2(4), 441-452.
  • 8. Bierzyński, A. (1988) Deprotonation of Glu9 destabilizes the α-helix in C-peptide of RNase A. Int. J. Pept Protein Res.32, 256-261.
  • 9. Dyson, H.J., Rance, M., Houghten, R.A., Lerner, R.A. & Wright, P.E. (1988) Folding of immunogenic peptide fragments of proteins in water solution. I. Sequence requirements for the formation of a reverse turn. J. Mol. Biol. 201, 161-200.
  • 10. Siedlecka, M., Goch, G., Ejchart, A., Sticht, H. & Bierzyński, A. (1999) α-Helix nucleation by a calcium-binding peptide loop. Proc. Natl. Acad. Sci. U.S.A. 96, 903-908.
  • 11. Lakowicz, J.R. & Eis, P.S. (1993) Time-resolved energy transfer measurements of donor-acceptor distance distributions and intramolecular flexibility of a CCHH zinc finger peptide. Biochemistry 32, 7981-7993.
  • 12. Groth, M., Malicka, J., Rodziewicz-Motowidło, S., Czaplewski, C., Klaudel, L., Wiczk, W. & Liwo, (2001) Determination of conformational equilibrium of peptides in solution by NMR spectroscopyand theoretical conformational analysis: Application to the calibration of mean-field solvation models. Biopolymers 60, 79-95.
  • 13. Groth, M., Malicka, J., Czaplewski, C., Ołdziej, S., Łankiewicz, L., Wiczk, W. & Liwo, A. (1999) Maximum entropy approach to the determination of solution conformation of flexible polypeptides by global conformation analysis and NMR spectroscopy - Application to DNS1-c-[D-A2bu2, Trp4, Leu5]enkephalin and DNS1-c-[D-A2bu2, Trp4, D-Leu5]enkephalin. J. Biomol. NMR 15, 315-330.
  • 14. Sidor, M., Wójcik, J., Pawlak, D. & Izdebski, J. (1999) Conformational analysis of a novel cyclic enkephalin analogue using NMR and EDMC calculations. Acta Biochim. Polon. 46, 641-650.
  • 15. Pawlak, D., Oleszczuk, M., Wójcik, J., Pachulska, M., Chung, N.N., Schiller, P.W. & Izdebski, J. (2001) Higly potent side-chain to side-chain cyclized enkephalin analogues containing a carbonyl bridge: Synthesis, biology and conformation. J. Pept. Sci. 7, 128-140.
  • 16. Wójcik, J., Góral, J., Pawłowski, K. & Bierzyński, A. (1997) Isolated calcium-binding loops of EF-hand proteins can dimerize to form a native-like structure. Biochemistry 36, 680-687.
  • 17. Jaravine, V.A., Alexandrescu, A.T. & Grzesiek, S. (2001) Observation of the closing of individual hydrogen bonds during TFE-induced helix formation in a peptide. Protein Sci. 10, 943-950.
  • 18. Cordier, F. & Grzesiek, S. (1999) Direct observation of hydrogen bonds in proteins by interresidue 3hJNC' scalar couplings. J. Am. Chem. Soc. 121, 1601-1602.
  • 19. Cornilescu, G., Hu, J.S. & Bax, A. (1999) Identification of the hydrogen bonding network in a protein by scalar couplings. J. Am. Chem. Soc. 121, 2949-2950.
  • 20. Bai, Y., Milne, J.S., Mayne, L. & Englander, S.W. (1993) Primary structure effects on peptide group hydrogen exchange. Proteins 17, 75-86.
  • 21. Connelly, G.P., Bai, Y., Jeng, M.-F. & Englander, S.W. (1993) Isotope effects in peptide group hydrogen exchange. Proteins 17, 87-92.
  • 22. Wńjcik, J., Ruszczyńska, K., Zhukov, I. & Ejchart, A. (1999) NMR measurements of proton exchange between solvent and peptides and proteins. Acta Biochim. Polon. 46, 651- 663.
  • 23. Wagner, D.S., Milton, L.G., Yan, Y., Erickson, B.W. & Anderegg, R.J. (1994) Deuterium exchange of α-helices and β-sheets as monitored by electrospray ionization mass spectrometry. Protein Sci. 3, 1305-1314.
  • 24. Donward, K.M. (1997) Characterization of the conformations of antigenic peptides of protein lactate dehydrogenase (LDH-C4) by electrospray ionization spectroscopy. Rapid Commun. Mass Spectrom. 11, 1853-1858.
  • 25. Buijs, J., Hakansson, K., Hagman, C., Hakansson, P. & Oscarsson, S. (2000) A new method for the accurate determination of the isotopic state of single amide hydrogens within peptides using Fourier transform ion cyclotron resonance mass spectrometry. Rapid Commun. Mass Spectrom. 14, 1751-1756.
  • 26. Förster, T. (1965) Delocalized excitation and excitation transfer; in Modern Quantum Chemistry (Sinanoglu, O., ed.) vol. 3, Academic Press, New York.
  • 27. Lankiewicz, L., Malicka, J. & Wiczk, W. (1997) Fluorescence resonance energy transfer in studies of inter-chromophoric distances in biomolecules. Acta Biochim. Polon. 44, 477-490.
  • 28. Gryczynski, I., Wiczk, W., Johnson, M.L., Cheung, H.C., Wang, C. & Lakowicz, J.R. (1988) Resolution of the end-to-end distance distribution of flexible molecules using quenching-induced variations of the Förster distance for fluorescence energy transfer. Biophys. J. 54, 577-586.
  • 29. Gryczynski, I., Wiczk, W., Johnson, M.L. & Lakowicz, J.R. (1988) End-to-end distance distributions of flexible molecules from steady state fluorescence energy transfer and quenching-induced changes in the Förser distance. Chem. Phys. Lett. 145, 439-446.
  • 30. Lakowicz, J.R., Gryczynski, I., Kuśba, J., Wiczk, W., Szmacinski, H. & Johnson, M.L. (1994) Site-to-site diffusion in proteins as observed by energy transfer and frequency-domain fluorometry. Photochem. Photobiol. 59, 16-29.
  • 31. Greenfield, N.J. (1996) Methods to estimate the conformation of proteins and polypeptides from circular dichroism data. Anal. Biochem. 235, 1-10.
  • 32. Gans, P.J., Lyu, P.C., Manning, M.C., Woody, R.W. & Kallenbach, N.R. (1991) The helix-coil transition in heterogeneous peptides with specific side-chain interactions: Theory and comparison with CD spectral data. Biopolymers 31, 1605-1614.
  • 33. Rohl, C.A. & Baldwin, R.L. (1997) Comparison of NH exchange and circular dichroism as techniques for measuring the parameters of the helix-coil transition in peptides. Biochemistry 36, 8435-8442.
  • 34. Malicka, J., Groth, M., Czaplewski, C., Liwo, A. & Wiczk, W. (1999) Fluorescence decay time distribution analysis of cyclic enkephalin analogues. Influence of the sovents and configuration of amino acids in position 2 and 3 on changes in conformation. Acta Biochim. Polon. 46, 615-629.
  • 35. Greenfield, N. & Fasman, G.D. (1969) Computed circular dichroism spectra for the evaluation of protein conformation. Biochemistry 8, 4108.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-abpv48i4p1091kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.