Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2012 | 67 | 1 | 47-72

Article title

Three-dimensional space as a medium of quantum entanglement

Content

Title variants

Languages of publication

EN

Abstracts

EN
Most physicists today still conceptualize time as a part of the physical space in which material objects move, although time has never been observed and measured as a part of the space. The concept of time here presented is that time measured with clocks is merely the numerical order of material change, i.e. motion in a three-dimensional space. In special relativity the Minkowskian four-dimensional space-time can be replaced with a three-dimensional space where time does not represent a fourth coordinate of space but must be considered merely as a mathematical quantity measuring the numerical order of material changes. By quantum entanglement the three-dimensional space is a medium of a direct information transfer between quantum particles. Numerical order of non-local correlations between subatomic particles in EPR-type experiments and other immediate quantum processes is zero in the sense that the three-dimensional space acts as an immediate information medium between them

Year

Volume

67

Issue

1

Pages

47-72

Physical description

Dates

published
1 - 01 - 2012
online
15 - 05 - 2013

Contributors

  • SpaceLife Institute, via Roncaglia 35, 61047 San Lorenzo in Campo (PU), Italy
  • SpaceLife Institute, via Roncaglia 35, 61047 San Lorenzo in Campo (PU), Italy

References

  • [1] Góźdź A., Stefańska K., Journal of Physics: Conference Series 104, 012007 (2008).[Crossref]
  • [2] Sorli A. S., Fiscaletti D., Klinar D., Physics Essays 24, 1 (2011).
  • [3] Sorli A. S., Fiscaletti D., Klinar D., Physics Essays 23, 2, 330-332 (2010).
  • [4] Sorli A. S., Fiscaletti D., Physics Essays 25, 1 (2012).
  • [5] Selleri F., Space and time should be preferred to spacetime - 1, International Workshop Physics for the 21st Century, 5-9 June 2000.
  • [6] Selleri F., Space and time should be preferred to spacetime - 2, International Workshop Physics for the 21st Century, 5-9 June 2000.
  • [7] Manaresi R., Selleri T., Found. Phys. Lett. 17, 65 (2004).
  • [8] Lynds P., Found. Phys. Lett. 16, 4, 343-355 (2003).
  • [9] Newton Da Costa C. A., Adonai S. Sant’Anna, Found. Phys. Lett. 14, 6, 553-563 (2003).
  • [10] Girelli F., Liberati S., Sindoni L., Is the notion of time really fundamental?, arXiv:0903.4876, 27 Mar 2009.
  • [11] Prati E., The nature of time: from a timeless hamiltonian framework to clock time metrology, arXiv:0907.1707v1, 10 Jul 2009.
  • [12] Pavsic M., Towards the unification of gravity and other interactions: what has been missed, arXiv:0912.4836v1 [gr-qc], 24 Dec 2009.
  • [13] Lan B. L., Physics Essays 24, 293 (2011).
  • [14] Eckle P., Pfeiffer A. N., Cirelli C., Staudte A., Dörner R., Muller H. G., Büttiker M., Keller U., Science 322, 5907, 1525-1529 (2008). http://www.sciencemag.org/cgi/content/short/322/5907/1525
  • [15] Pirandola et al. S., A Letters Journal Exploring Frontier of Physics (2008).
  • [16] Hegerfeldt G. C., Phys. Rev. Lett. 72, 596-599 (1994). http://prola.aps.org/abstract/PRL/v72/i5/p596_1
  • [17] Palmer T. N., The Invariant Set Hypothesis: A New Geometric Framework for the Foundations of Quantum Theory and the Role Played by Gravity, Submitted on 5 Dec 2008, last revised 17 Feb 2009, http://arxiv.org/abs/0812.1148.
  • [18] Field J. H., Physics of Particles and Nuclei Letters 6, 4, 320-324 (2009).[Crossref]
  • [19] von Neumann J., Mathematische Grundlagen der Quantenmeckanik, Springer, Berlin 1932.
  • [20] Heisenberg W., Physics and Philosophy, Harper and Row 1958.
  • [21] Pavsic M., The Landscape of Theoretical Physics: A Global View, Kluwer Academic Publishers, Boston-Dordrecht-London 2001.
  • [22] Rovelli C., Found. Phys. 28, 7, 1031-1043 (1998), e-print arXiv:quant-ph/9802020v3.
  • [23] Bohm D., Quantum Theory, Prentice-Hall, New York 1951.
  • [24] Bell J. S., Physics 1, 195-200 (1964).
  • [25] Sorli A., Sorli I. K., Frontier Perspectives 14, 1, 38-40 (2005).
  • [26] Fiscaletti D., Electronic Journal of Theoretical Physics 3, 2, 15-20 (2005).
  • [27] Bohm D., Phys. Rev. 85, 166-193 (1952).
  • [28] Bohm D., Phys. Rev. 89 (1953).
  • [29] D. Fiscaletti, Sorli A., Frontier Perspectives 14, 2 (2005/2006).
  • [30] Sbitnev V. I., Kvantovaya Magiya 5, 1, 1101-1111 (2008). URL http://quantmagic.narod.ru/volumes/VOL512008/p1101.html.
  • [31] Fiscaletti D., Sorli A. S., Physics Essays 21, 4, 245-251 (2008).
  • [32] Philippidis C., Dewdney C., Hiley B., Il Nuovo Cimento B 52, 15 (1979).
  • [33] Dewdney C., Calculations in the causal interpretation of quantum mechanics, in: Quantum Uncertainties - Recent and Future Experiments and Interpretations, Plenum Press, New York, 19-40 (1987).

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_v10246-012-0014-5
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.