Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2012 | 19 | 4 | 585-595

Article title

Application of mosses to identification of emission sources of polycyclic aromatic hydrocarbons / Wykorzystanie mchów do identyfikacji źródeł emisji wielopierścieniowych węglowodorów aromatycznych

Content

Title variants

Languages of publication

EN

Abstracts

EN
The moss Pleurozium schreberi was used to evaluate the emission of polycyclic aromatic hydrocarbons (PAHs) at Polish cemeteries on the All Saints' Day, when Poles traditionally light candles and candle lamps in memory of the deceased. Moss samples were exposed for 7 days at 4 cemeteries and, for comparison, in a city centre and in a rural area. During exposition, the mean content of 16 monitored PAHs in the samples increased by 455 ng/g at the cemeteries and by 689 ng g-1 in the city centre. In the rural area, the samples showed no statistically significant changes. PAHs whose content increased only in the moss samples exposed at the cemeteries included naphthalene, pyrene, benzo[b]fluoranthene together with benzo[k]fluoranthene, benzo[g,h,i]perylene, indeno[1,2,3-cd]pyrene and dibenzo[a,h]anthracene. The concentrations of other PAHs increased in samples exposed in the city centre and at two cemeteries located in the suburban areas. The results presented confirm the possibility of using mosses in biomonitoring of PAHs.
PL
Mchy Pleurozium schreberi wykorzystano do oceny emisji WWA na cmentarzach podczas Święta Wszystkich Świętych. W Polsce jest to tradycyjny okres pamięci o zmarłych, dla których uczczenia spalane są duże ilości świec i zniczy. Mchy eksponowano przez 7 dni na 4 cmentarzach oraz, dla porównania, w centrum miasta i na terenie wiejskim. W próbkach mchów oznaczano 16 związków z grupy WWA. Po okresie ekspozycji średni przyrost ΣWWA wyniósł: na cmentarzach 455 ng/g i w centrum miasta 689 ng/g. Nie stwierdzono statystycznie istotnych zmian w próbkach eksponowanych na terenie wiejskim. W próbkach eksponowanych na cmentarzach wykazano charakterystyczne przyrosty stężeń: naftalenu, pirenu, sumy benzo[b]fluorantrenu i benzo[k]fluorantrenu, benzo[g,h,i]perylenu, indeno[1,2,3-cd]pirenu i dibenzo[a,h]antracenu. Stwierdzono także proporcjonalne przyrosty stężeń pozostałych WWA w próbkach eksponowanych w centrum miasta oraz na 2 cmentarzach położonych na jego peryferiach. Zaprezentowane wyniki badań potwierdzają opinię o możliwościach zastosowania mchów w biomonitoringu emisji WWA.

Publisher

Year

Volume

19

Issue

4

Pages

585-595

Physical description

Dates

published
1 - 11 - 2012
online
13 - 11 - 2012

Contributors

  • Department of Land Protection, Opole University, ul. Oleska 22, 45-052 Opole, Poland, phone +48 77 401 60 27
  • Department of Thermal Engineering and Industrial Facilities, Opole University of Technology, ul. S. Mikołajczyka 5, 45-271 Opole, Poland, phone +48 77 400 6391
author
  • Chair of Biotechnology and Molecular Biology, Opole University, ul. kard. B. Kominka 6, 45-032 Opole, Poland, phone +48 77 401 60 42
author
  • Chair of Biotechnology and Molecular Biology, Opole University, ul. kard. B. Kominka 6, 45-032 Opole, Poland, phone +48 77 401 60 42

References

  • [1] Lee W-J, Wang Y-F, Lin T-Ch, Chen Y-Y, Lin W-Ch, Ku Ch-Ch, Cheng J-T. PAH characteristics in the ambient air of traffic-source. Sci Total Environ. 1995;159:185-200. SSDI: 0048-9697(95)04323-E.
  • [2] Lohmann R, Breivik K, Dachs J, Muir D. Global fate of POPs: current and future research directions. Environ Pollut. 2007;150:150-165. DOI: 10.1016/j.envpol.2007.06.051.[Crossref][WoS]
  • [3] Wang Z, Ma X, Na G, Lin Z, Ding Q, Yao Z. Correlations between physicochemical properties of PAHs and their distribution in soil, moss and reindeer dung at Ny-Ĺlesund of the Arctic. Environ Pollut. 2009;157:3132-3136. DOI: 10.1016/j.envpol.2009.05.014.[WoS][Crossref]
  • [4] Wolterbeek B. Biomonitoring of trace element air pollution: principles, possibilities and perspectives. Environ Pollut. 2002;120:11-21. PII: S0269-7491(02)00124-0.
  • [5] Markert B, Breure A, Zechmeister H, editors. Bioindicators & Biomonitors: Principles, Concepts and Applications. Amsterdam: Elsevier; 2003.
  • [6] Smodiš B, Pignata ML, Saiki M, Cortés E, Bangfa N, Markert B, et al. Validation and application of plants as biomonitors of trace element atmospheric pollution - a co-ordinated effort in 14 countries. J Atmos Chem. 2004;49:3-13.
  • [7] Markert B. Definitions and principles for bioindication and biomonitoring of trace metals in the environment. J Trace Elem Med Biol. 2007;21(S1):77-82. DOI: 10.1016/j.jtemb.2007.09.015.[WoS][Crossref]
  • [8] Samecka-Cymerman A, Kosior G, Kempers AJ. Comparison of the moss Pleurozium schreberi with needles and bark of Pinus sylvestris as biomonitors of pollution by industry in Stalowa Wola (south-east Poland). Ecotoxicol Environ Saf. 2006;65:108-117. DOI: 10.1016/j.ecoenv.2005.05.009.[Crossref]
  • [9] Kłos A, Rajfur M, Wacławek M, Wacławek W, Wünschmann S, Markert B. Quantitative relations between different concentrations of micro- and macroelements in mosses and lichens: the region of Opole (Poland) as an environmental interface in between Eastern and Western Europe. Int J Environ Health. 2010;4:98-119. DOI: 10.1504/IJENVH.2010.033702.[Crossref]
  • [10] Kłos A, Rajfur M, Šrámek I, Wacławek M. Use of lichen and moss in assessment of forest contamination with heavy metals in praded and glacensis euroregions (Poland and Czech Republic). Water Air Soil Pollut. 2011;222:367-376. DOI: 10.1007/s11270-011-0830-9.[Crossref][WoS]
  • [11] Kłos A, Rajfur M, Wacławek M, Wacławek W. Impact of roadway particulate matter on deposition of pollutants in the vicinity of main roads. Environ Protect Eng. 2009;3:105-121.
  • [12] Aničić M, Tasić M, Frontasyeva MV, Tomašević M, Rajšić S, Mijić Z, Popović A. Active moss biomonitoring of trace elements with Sphagnum girgensohnii moss bags in relation to atmospheric bulk deposition in Belgrade, Serbia. Environ Pollut. 2009;157:673-679. DOI: 10.1016/j.envpol.2008.08.003.[13] Kosior G, Samecka-Cymerman A, Kolon K, Kempers AJ. Bioindication capacity of metal pollution of native and transplanted Pleurozium schreberi under various levels of pollution. Chemosphere. 2010;81:321-326. DOI: 10.1016/j.chemosphere.2010.07.029.[Crossref]
  • [14] Szczepaniak K, Biziuk M. Aspects of the biomonitoring studies using mosses and lichens as indicators of metal pollution. Environ Res. 2003;93:221-230. DOI: 10.1016/S0013-9351(03)00141-5.[Crossref]
  • [15] Wegener JWM, van Schaik MJM, Aiking H. Active biomonitoring of polycyclic aromatic hydrocarbons by means of mosses. Environ Pollut. 1992;76:15-18.
  • [16] Zechmeister HG, Dullinger S, Hohenwallner D, Riss A, Hanus-Illnar A, Scharf S. Pilot study on road traffic emissions (PAHs, heavy metals) measured by using mosses in a tunnel experiment in Vienna, Austria. Environ Sci Pollut Res. 2006;13:398-405. DOI: http://dx.doi.org/10.1065/espr2006.01.292.
  • [17] Viskari E-L, Rekilä R, Roy S, Lehto O, Ruuskanen J, Kärenlampi L. Airborne pollutants along a roadside: Assessment using snow analyses and moss bags. Environ Pollut. 1997;97:153-160. PII: S0269-7491(97)00061-4.
  • [18] Viskari E-L. Epicuticular wax of Norway spruce needles as indicator of traffic pollutant deposition. Water Air Soil Pollut. 2000;121:327-337. DOI: wate2725.tex; 26/05/2000; 10:43; p.1.
  • [19] Orliński R. Multipoint moss passive samplers assessment of urban airborne polycyclic aromatic hydrocarbons: concentrations profile and distribution along Warsaw main streets. Chemosphere. 2002;48:181-186. PII: S0045-6535(02)00062-0.
  • [20] Skert N, Falomo J, Giorgini L, Acquavita A, Capriglia L, Grahonja R, Miani N. Biological and artificial matrixes as PAH accumulators: An experimental comparative study. Water Air Soil Pollut. 2010;206:95-103. DOI: 10.1007/s11270-009-0089-6.[Crossref]
  • [21] Áres A, Aboal JR, Fernández JÁ, Real C, Carballeira A. Use of the terrestrial moss Pseudoscleropodiumpurum to detect sources of small scale contamination by PAHs. Atmos Environ. 2009;43:5501-5509. DOI: 10.1016/j.atmosenv.2009.07.005.[WoS][Crossref]
  • [22] Rantalainen A-L, Hyötyläinen T, Saramo M, Niskanen I. Passive sampling of PAHs in indoor air in Nepal. Toxicol Environ Chem. 1999;68:335-348. DOI: 10.1080/02772249909358667.[Crossref]
  • [23] Holoubek I, Kořínek P, Šeda Z, Schneiderová E, Holoubková I, Pacl A. et al. The use of mosses and pine needles to detect persistent organic pollutants at local and regional scales. Environ Pollut. 2000;109:283-292. PII: S0249+7491(99)00260-2.
  • [24] Migaszewski ZM, Gałuszka A, Pasławski P. Polynuclear aromatic hydrocarbons, phenols, and trace metals in selected soil profiles and plant bioindicators in the Holy Cross Mountains, South-Central Poland. Environ Inter. 2002;28:303-313. PII: S0160-4120(02)00039-9.[Crossref]
  • [25] Gałuszka A. Distribution patterns of PAHs and trace elements in mosses Hylocomium splendens (Hedw.) B.S.G. and Pleurozium schreberi (Brid.) Mitt. from different forest communities: A case study, south-central Poland. Chemosphere. 2007;67:1415-1422. DOI: 10.1016/j.chemosphere.2006.10.010.[Crossref][WoS]
  • [26] Migaszewski ZM, Gałuszka A, Crock JG, Paul J, Lamothe PJ, Dołęgowska S. Interspecies and interregional comparisons of the chemistry of PAHs and trace elements in mosses Hylocomium splendens (Hedw.) B.S.G. and Pleurozium schreberi (Brid.) Mitt. from Poland and Alaska. Atmos Environ. 2009;43:1464-1473. DOI: 10.1016/j.atmosenv.2008.11.035.[Crossref]
  • [27] Dołęgowska S, Migaszewski ZM. PAH concentrations in the moss species Hylocomium splendens (Hedw.) B.S.G. and Pleurozium schreberi (Brid.) Mitt. from the Kielce area (south-central Poland). Ecotoxicol Environ Saf. 2011;74:1636-1644. DOI: 10.1016/j.ecoenv.2011.05.011.[Crossref]
  • [28] Ötvös E, Kozák IO, Fekete J, Sharma VK, Tuba Z. Atmospheric deposition of polycyclic aromatic hydrocarbons (PAHs) in mosses (Hypnum cupressiforme) in Hungary. Sci Total Environ. 2004;330:89-99. DOI: 10.1016/j.scitotenv.2004.02.019.[Crossref]
  • [29] Liu X, Zhang G, Jones KC, Li X, Peng X, Qi S. Compositional fractionation of polycyclic aromatic hydrocarbons (PAHs) in mosses (Hypnum plumaeformae WILS.) from the northern slope of Nanling Mountains, South China. Atmos Environ. 2005;39:5490-5499. DOI: 10.1016/j.atmosenv.2005.05.048.[Crossref]
  • [30] Foan L, Sablayrolles C, Elustondo D, Lasheras E, González L, Ederra A, et al. Reconstructing historical trends of polycyclic aromatic hydrocarbon deposition in a remote area of Spain using herbarium moss material. Atmos Environ. 2010;44:3207-3214. DOI: 10.1016/j.atmosenv.2007.02.004.[Crossref][WoS]
  • [31] Report. Stan środowiska w województwie opolskim w roku 2010 (State of the environment in the province of Opole in 2010). Biblioteka Monitoringu Środowiska, Opole: WIOŚ; 2011.
  • [32] Yunker MB, Macdonald RW, Vingarzan R, Mitchell RH, Goyette D, Sylvestre S. PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Org Geochem. 2002;33:489-515. PII: S0146-6380(02)00002-5.[Crossref]
  • [33] McGill R, Tuke JW, Larsen WA. Variations of Box Plots. American Statistic. 1978;32:12-16.[34] Liu X-Y, Xiao H-Y, Liu C-O, Lia Y-Y. Δ13C and Δ15N of moss Haplocladium microphyllum (Hedw.) Broth. for indicating growing environment variation and canopy retention on atmospheric nitrogen deposition. Atmos Environ. 2007;41:4897-4907. DOI: 10.1016/j.atmosenv.2007.02.004.[Crossref][WoS]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_v10216-011-0041-8
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.