Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2012 | 19 | 3 | 359-372

Article title

A LCC Analysis of Rainwater Management Variants

Content

Title variants

Languages of publication

EN

Abstracts

EN
The paper presents results of the Life Cycle Cost (LCC) analysis carried out for several variants of rainfall water management in a newly designed multi-family dwelling house. According to the LCC methodology, calculations were performed for the whole undertaking life cycle with both investment outlays and operation/maintenance costs taken into account. The LCC analysis was carried out, in particular, for a variant assuming that the rainwater collected from the roof will be entirely discharged to the sewage system. On the other hand, the second variant provided for replacement of traditional building roof with a green one. Facilities of that type, thanks to their retention properties, may delay runoff of rainwater and reduce the overall quantity of water discharged from roof surface and therefore can be classified as Sustainable Urban Drainage Systems. In the third case considered, rainwater is to be utilised in the building. It was assumed that precipitation water will be stored in a tank and used in the sanitary water supply system for flushing toilets, thus reducing the overall tap water purchase costs.
PL
Przedstawiono wyniki analizy LCC dla kilku wariantów zagospodarowania wód opadowych dla projektowanego wielorodzinnego budynku mieszkalnego. Zgodnie z metodologią określania Life Cycle Cost wykonano obliczenia w pełnym cyklu istnienia przedsięwzięcia, uwzględniając zarówno nakłady inwestycyjne, jak i koszty użytkowania i konserwacji. Analiza LCC została przeprowadzona dla wariantu, w którym założono, że wody opadowe z dachu zostaną odprowadzone w całości do systemu kanalizacyjnego. Natomiast w drugim wariancie tradycyjny dach budynku został zastąpiony dachem zielonym. Tego typu obiekty dzięki swoim właściwościom retencyjnym mogą opóźniać spływ wód opadowych i redukować całkowity odpływ z powierzchni dachu, przez co zaliczane są do zrównoważonych systemów odwadniających (Sustainable Urban Drainage Systems). W trzecim przypadku zastosowano system gospodarczego wykorzystania wody deszczowej w budynku. Założono, że zmagazynowane w zbiorniku wody opadowe zostaną wykorzystane w instalacji sanitarnej do spłukiwania toalet, co pozwoli obniżyć koszty zakupu wody wodociągowej i wpłynie korzystanie na wyniki finansowe funkcjonowania obiektu mieszkalnego.

Publisher

Year

Volume

19

Issue

3

Pages

359-372

Physical description

Dates

published
1 - 1 - 2012
online
16 - 7 - 2012

Contributors

author
  • Department of Infrastructure and Sustainable Development, Rzeszow University of Technology, al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
  • Department of Infrastructure and Sustainable Development, Rzeszow University of Technology, al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
  • Department of Environmental Engineering, Technical University of Kosice, Vysokoškolská 4, 042 00 Košice, Slovakia

References

  • EU Water Framework Directive (Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy, OJ L 327, 22.12.2000, p. 1-73).
  • Act of 18 July 2001 ‘Water Law’. J. Laws 2001, No. 115, Item 1229 as amended.
  • Burszta-Adamiak E. Opłaty za wody opadowe - doświadczenia polskie i zagraniczne [Tariffs for precipitation water - domestic and foreign experiences]. Gaz Woda i Techn Sanit. 2009;3:15-18.
  • ---
  • Parikh P, Taylor M, Hoagland T, Thurston H, Shuster W. Application of market mechanisms and incentives to reduce stormwater runoff. An integrated hydrologic, economic and legal approach. Environ Sci Policy. 2005;8:133-144.[Crossref]
  • ---
  • ---
  • ---
  • ---
  • ---
  • ---
  • Edel R. Stormwater utility fees in Germany. Gaz Woda i Techn Sanit. 2009;3:18-21.
  • Chouli E, Aftias E, Deutsch JC. Applying storm water management in Greek cities: learning from the European experience. Desalination. 2007;210:61-68.
  • Herman R. Green roofs in Germany: Yesterday, today and tomorrow. Proc 1st North American Green Roof Conference: Greening Rooftops for Sustainable Communities, Chicago, May 29-30, 2003. Toronto: The Cardinal Group; 2003.
  • Commission of the European Communities. Communication from the commission to the council and the European Parliament on Thematic Strategy on the urban environment. Brussels: 2006.
  • Lee A. Life cycle cost analysis - green roofs from an investment. Proc 2nd North American Green Roof Conference: Greening Rooftops for Sustainable Communities, Portland, June 2-4, 2004. Toronto: The Cardinal Group; 2004.
  • Carter T, Keeler A. Life-cycle cost-benefit analysis of extensive vegetated roof systems. J Environ Manage. 2008;87:50-363.
  • Alcazar S, Bass B. Life cycle assessment of green roofs - case study of an eight-story residential building in Madrid and implications for green roof benefits. Proc 4th North American Green Roof Conference: Greening Rooftops for Sustainable Communities, Boston, May 11-12, 2006. Toronto: The Cardinal Group; 2006.
  • Kosareo L, Ries R. Life Cycle Assessment of a green roof in Pittsburgh. Proc 4th North American Green Roof Conference: Greening Rooftops for Sustainable Communities, Boston, May 11-12, 2006. Toronto: The Cardinal Group; 2006.
  • Getter K, Rowe B, Andresen J. Quantifying the effect of slope on extensive green roof stormwater retention. Ecol Eng. 2007;31:225-231.[Crossref]
  • DeNardo JC, Jarrett AR, Manbeck HB, Beattie DJ, Berghage RD. Stormwater mitigation and surface temperature reduction by green roofs. Trans. ASABE. 2005;48(4):1491-1496.
  • Liesecke HJ. Extensive begrünung bei 5 dachneigung. Stadt und Grün. 1999;48(5):337-346.
  • Köhler M, Schmidt M. Langzeituntersuchungen an begrünten Dächern in Berlin. Dach+Grün. 1999;8:12-18.
  • Schade C. Wasserrückhaltung und Abflußbeiwerte bei dünnschichtigen extensivbegrünungen. Stadt und Grün. 2000;49(2):95-100.
  • Van Woert ND, Rowe DB, Andresen JA, Rugh CL, Fernandez RT, Xiao L. Green roof stormwater retention: effects of roof surface, slope and media depth. J Environ Qual. 2005;34(3):1036-1044.[Crossref]
  • Villarreal EL, Bengtsson L. Response of a Sedum green roof to individual rain events. Ecol Eng. 2005;25(1):1-7.[Crossref]
  • Kolb W. Good reasons for roof planting: Green roofs and rainwater. Acta Hort. 2004;643:295-300.
  • Bengtsson L. Peak flows from thin sedum-moss roof. Nord Hydrol. 2005;36:269-280.
  • Köhler M. Urban storm water management by extensive green roofs. Proc 38th IFLA World Congress. Singapore: 2005;124-133.
  • Burszta-Adamiak E. Retention of precipitation water on green roof in Wrocław conditions. Gaz Woda i Techn Sanit. 2010;3:21-24.
  • Szajda E, Pływaczyk A, Pęczkowski G. Using green roofs for reduction of precipitation water runoff in municipal agglomerations. In: Precipitation water management problems. Łomotowski J, editor. Wrocław: 2008.
  • Stec A, Hypiak J. Modelling rainwater runoff from green roofs in the Storm Water Management Model program. Instal. 2011;2:38-42.
  • Liu K. Engineering performance of rooftop gardens through field evaluation. Proc 18th International Convention of the Roof Consultants Institute. Tampa, FL: 2003;93-103.
  • Fioretti R, Palla A, Lanza LG, Principia P. Green roof energy and water related performance in the Mediterranean climate. Build Environ. 2010;45:1890-1904.[Crossref]
  • Moran A, Hunt B, Jennings G. A North Carolina field study to evaluate green roof runoff quantity, runoff quality and plant growth. Proc 2nd North American Green Roof Conference: Greening Rooftops for Sustainable Communities, Portland, June 2-4, 2004. Toronto: The Cardinal Group; 2004.[Crossref]
  • Deutsch B, Whitlow H, Sullivan M, Savineau M. A green roof vision based on environmental benefits for air quality and storm water management. Proc 3rd North American Green Roof Conference: Greening Rooftops for Sustainable Communities, Washington, May 4-6, 2005. Toronto: The Cardinal Group; 2005.
  • Peck S. A model for North American infrastructure development. EarthPledge. Green roofs: Ecological design and construction. Atglen: Schiffer Books, 2005;127-129.
  • Peck S, Kuhn M. Design guidelines for green roofs.
  • Yok Tan P, Sia A. A pilot green roof research project in Singapore. Proc 3rd North American Green Roof Conference: Greening Rooftops for Sustainable Communities, Washington, May 4-6, 2005. Toronto: The Cardinal Group; 2005.
  • Clark C, Talbot B, Bulkley J, Adriaens P. Optimization of green roofs for air pollution mitigation. Proc 3rd North American Green Roof Conference: Greening Rooftops for Sustainable Communities, Washington, May 4-6, 2005. Toronto: The Cardinal Group; 2005.
  • Peck S, Callaghan C, Kuhn M, Bass B. Greenbacks from green roofs: Forging a new industry in Canada. Ottawa: Canada Mortgage and Housing Corporation; 1999.
  • Connelly M, Liu K. Green roof research in British Columbia: An overview. Proc 3rd North American Green Roof Conference: Greening Rooftops for Sustainable Communities, Washington, May 4-6, 2005. Toronto: The Cardinal Group; 2005.
  • Santamouris M, Pavlou C, Doukas P, Mihalakakou G, Synnefa A, et al. Investigationg and analyzing the energy and environmental performance of an experimental green roof system installed in a nursery school building in Athens. Energy, 2007;32:1781-1788.[Crossref]
  • Dunnett N, Kingsbury N. Planting green roofs and living walls. Portland: Timber Press; 2004.
  • Ordinance of the Minister of Infrastructure of 12 April 2002 on technical conditions applicable to buildings and location thereof. J Laws No. 75, Item 690.
  • Loder M, Peck S. Green roofs contribution to smart growth implementation. Proc 2nd North American Green Roof Conference: Greening Rooftops for Sustainable Communities, Portland, June 2-4, 2004. Toronto: The Cardinal Group; 2004.
  • European Commission: Study on water performance of buildings. Reference Report 070307/2008/520703/ETU/D2, 2009.
  • Furumai H. Rainwater and reclaimed wastewater for sustainable urban water use. Phys Chem Earth. 2008;33:340-346.[Crossref]
  • Jones M, Hunt W. Performance of rainwater harvesting systems in the southeastern United States. Resour Conserv Recy. 2010;54:623-629.[Crossref]
  • Coombes P. Rainwater Tanks Revisited: New opportunities for urban water cycle management. The University of Newcastle, Australia; 2003.
  • Ghisi E, Tavares D, Rocha V. Rainwater harvesting in petrol stations in Brasilia: Potential for notable water savings and investment feasibility analysis. Resour Conserv Recy. 2009;54:79-85.[Crossref]
  • Ghisi E, Oliveira S. Potential for potable water savings by combining the use of rainwater and greywater in houses in southern Brazil. Build Environ. 2007;42:1731-1742.[Crossref]
  • Ghisi E. Potential for potable water savings by using rainwater in the residential sector of Brazil. Build Environ. 2006;41:1544-1550.[Crossref]
  • Fewkes A. The use of rainwater for WC flushing: the field testing of a collection system. Build Environ. 1999;34:765-772.[Crossref]
  • Zaizen M, Urakawa T, Matsumoto Y, Takai H. The collection of rainwater from dome stadiums in Japan. Urban Water. 1999;1:355-359.
  • Appan A. A dual-mode system for harnessing roofwater for non-potable uses. Urban Water. 1999;1:317-321.
  • Chilton J, Maidment G, Marriott D, Francis A, Tobias G. Case study of rainwater recovery system in a commercial building with a large roof. Urban Water. 1999;1:345-354.
  • Coombes PJ, Argus JR, Kuczera G. Figtree place: a case study in water sensitive urban development. Urban Water. 1999;1:335-343.
  • Ghisi E, Montibeller A, Schmidt RW. Potential for potable water savings by using rainwater: An analysis over 62 cities in southern Brazil. Build Environ. 2006;41:204-210.[Crossref]
  • Palla A, Gnecco I, Lanza LG. Non-dimensional design parameters and performance assessment of rainwater harvesting systems. J Hydrol. 2011;401:65-76.
  • ---
  • Słyś D. Potential of rainwater utilization in residential housing in Poland. Water Environ J. 2009;23:318-325.
  • Słyś D, Bewszko T. LCC analysis of rainwater utilization system in multi-family residential buildings. Arch Environ Protect. 2010;4:107-118.
  • Ordinance of the Minister of Building Industry on determination of tariffs, template of application for tariff approval and conditions of settlements on account of water supply and collective sewage disposal. J. Laws 2006, No. 127, Item 886.
  • Philippi P. How to get cost reduction in green roof construction. Proc 4th Annual Greening Rooftops for Sustainable Communities, Boston, May 11-12, 2006. Toronto: The Cardinal Group; 2006.
  • Köhler M, Keeley M. Green roof technology and development. EarthPledge. Green roofs: Ecological design and construction. Schiffer Books; Atglen: 2005, 108-112.
  • ---
  • Campisano A, Modica C. Experimental investigation on water saving by the reuse of washbasin grey water for toilet flushing. Urban Water. 2010;7:17-24.
  • Fewkes A. Modelling the performance of rainwater collection systems: towards a generalized approach. Urban Water. 2000;1:323-333.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_v10216-011-0026-7
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.