Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2012 | 33 | 4 | 539-546

Article title

Substrate Inhibition in Lipase-Catalysed Transesterification of Mandelic acid with Vinyl Acetate

Content

Title variants

Languages of publication

EN

Abstracts

EN
Kinetic resolution of (R)- and (S)-mandelic acid by its transesterification with vinyl acetate catalysed by Burholderia cepacia lipase has been studied. The influence of the initial substrate concentration on the kinetics of process has been investigated. A modified ping-pong bi-bi model of enzymatic transesterification of (S)-mandelic acid including substrate inhibition has been developed. The values of kinetic parameters of the model have been estimated. We have shown that the inhibition effect revealed over a certain threshold limit value of the initial concentration of substrate.

Publisher

Year

Volume

33

Issue

4

Pages

539-546

Physical description

Dates

published
1 - 12 - 2012
online
28 - 12 - 2012

Contributors

  • Warsaw University of Technology, Faculty of Chemical and Process Engineering, Department of Biotechnology and Bioprocess Engineering, Waryńskiego 1, 00-645 Warszawa, Poland
  • Warsaw University of Technology, Faculty of Chemical and Process Engineering, Department of Biotechnology and Bioprocess Engineering, Waryńskiego 1, 00-645 Warszawa, Poland
  • Warsaw University of Technology, Faculty of Chemical and Process Engineering, Department of Biotechnology and Bioprocess Engineering, Waryńskiego 1, 00-645 Warszawa, Poland

References

  • Campbell R.F., Fitzpatric K., Inghardt T., Karlsson O., Nilsson K., Reilly J.E., Yet L., 2003. Enzymatic resolution of substituted mandelic acids. Tetrahedron Lett., 44, 5477-5481. DOI: 10.1016/S0040-4039(03)01270-X.[Crossref]
  • Dąbkowska K., Szewczyk K.W., 2007. Mathematical modelling of enzymatic transesterification of mandelic acid with vinyl acetate. Chem. Proc. Eng., 28, 795-802.
  • Dąbkowska K., Szewczyk K.W., 2009. Influence of temperature on the activity and enantioselectivity of Burkholderia cepacia lipase in the kinetic resolution of mandelic acid enantiomers. Biochem. Eng. J., 46, 147- 153. DOI: 10.1016/j.bej.2009.04.023.[Crossref]
  • Ghanem A., Aboul-Enein H.Y., 2005. Application of lipases in kinetic resolution of racemates. Chirality, 17, 1-15. DOI: 10.1002/chir.20089.[PubMed][Crossref]
  • Gröger H., 2001. Enzymatic Routes to Enantiomerically pure aromatic α-hydroxy carboxylic acids: A further example for the diversity of biocatalysis. Adv. Synth. Catal., 343, 547-558. DOI: 10.1002/1615- 4169(200108)343:6/7<547::AID-ADSC547>3.0.CO;2-A.[Crossref]
  • Kibara K., Sakai K., Hashimoto Y., Nohira H., Saigo K., 1996. Design of resolving reagents: p-substituted mandelic acid as resolving reagents for 1-arylalkylamines. Tetrahedron: Asymmetry, 7, 1539-1542. DOI: 10.1016/0957-4166(96)00175-9.[Crossref]
  • Maier N.M., Franco P., Lindner W., 2001. Separation of enantiomers: needs, challenges, perspectives. J. Chromatogr. A, 906, 3-33. DOI: 10.1016/S0021-9673(00)00532-X.[Crossref]
  • Palomo M., Fernandez-Lorente G., Mateo C., Ortiz C., Guisan J.M., Fernandez-Lafuente R., 2002. Modulation of the enantioselectivity of lipases via controlled immobilization and medium engineering: hydrolytic resolution of mandelic acid esters. Enz. Microb. Technol., 31, 775-783. DOI: 10.1016/S0141-0229(02)00169-2.[Crossref]
  • Pilarek M., Szewczyk K.W., 2007. Kinetic model of 1,3-specific triacylglycerols alcoholysis catalyzed by lipases. J. Biotechnol., 127, 736-744. DOI: 10.1016/j.jbiotec.2006.08.012.[Crossref][WoS]
  • Segel I.H., 1993. Enzyme kinetic. Behavior and analysis of rapid equilibrium and steady-state enzyme systems. Wiley, New York, 827-828.
  • Sharma D., Sharma B., Shukla A.K., 2011. Biotechnological approach of microbial lipase: A review. Biotechnology, 10, 23-40. DOI: 10.3923/biotech.2011.23.40.[Crossref]
  • Stinson C.S., 2001. Chiral pharmaceuticals. Chem. Eng. News, 79, 79-97. DOI: 10.1021/cen-v079n040.p079.[Crossref]
  • Surivet J.-P., Vatèle J.-M., 1998. First total synthesis of (-)-8-epi-9-deoxygoniopypyrone. Tetrahedron Lett., 39, 9681-9682. DOI: 10.1016/S0040-4039(98)02269-2.[Crossref]
  • Szewczyk K.W., Pilarek M., Wrona M., 2001. Enzymatic propanolysis of triacetin. Inż. Chem. Proc., 22, 1351-1356.
  • Terreni M., Pagani G., Ubiali D., Fernández-Lafuente R., Mateo C., Guisán J.M., 2001. Modulation of penicillin acylase properties via immobilization techniques: one-pot chemoenzymatic synthesis of caphamandole from cephalosporin C. Bioorg. Med. Chem. Lett., 11, 2429-2432. DOI: 10.1016/S0960-894X(01)00463-2. Queiroz N., Nascimento M. G., 2002. Pseudomonas sp. lipase immobilized in polymers versus the use of free enzyme in the resolution of (R,S)-methyl mandelate. Tetrahedron Lett., 43, 5225-5227. DOI: 10.1016/S0040- 4039(02)01057-2.[Crossref]
  • Yadav G.D., Sivakumar P., 2004. Enzyme-catalysed optical resolution of mandelic acid via (R,S)-methyl mandelate in non-aqueous media. Biochem. Eng. J., 19, 101-107. DOI: 10.1016/j.bej.2003.12.004.[Crossref]
  • ---

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_v10176-012-0044-8
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.