Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2012 | 33 | 2 | 291-309

Article title

Continuous mathematical models of airlift bioreactors: Families, affinity, diversity and modelling for single-substrate kinetics

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
This paper presents a method of describing an airlift bioreactor, in which biodegradation of a carbonaceous substrate described by single-substrate kinetics takes place. Eight mathematical models based on the assumption of liquid plug flow and axial dispersion flow through the riser and the downcomer in the reactor were proposed. Additionally, the impact of degassing zone with assumed complete mixing on the obtained results was analyzed. Calculations were performed for two representative hydrodynamic regimes of reactor operation, i.e. with the presence of gas bubbles only within the riser and for complete gas circulation. The conclusions related to the apparatus design and process performance under sufficient aeration of the reaction mixture were drawn on the basis of the obtained results.

Publisher

Year

Volume

33

Issue

2

Pages

291-309

Physical description

Dates

published
1 - 6 - 2012
online
5 - 7 - 2012

Contributors

  • Institute of Chemical and Process Engineering, Cracow University of Technology, ul. Warszawska 24, 31-155 Cracow, Poland

References

  • Báleš Vl., Antošová M., 1999. Mathematical and experimental modelling of phenol degradation in air-lift bioreactors. Environ. Eng. Policy, 1, 209-216. DOI: 10.1007/s100220050024.[Crossref]
  • Boyadjiev Ch., 2006. On the modelling of an airlift reactor. Int. Journal Heat Mass Transf., 49, 2053-2057. DOI: 10.1016/j.ijheatmasstransfer.2006.01.015.[Crossref]
  • Camarasa E., Carvalho E., Meleiro L.A.C., Maciel Filhob R., Domingues A., Wild G., Poncin S., Midoux N., Bouillard J., 2001. Development of a complete model for an air-lift reactor. Chem. Eng. Sci., 56, 493-502. DOI: 10.1016/S0009-2509(00)00253-0.[Crossref]
  • García Calvo E., Letón P., Arranz M.A., 1991. Prediction of gas holdup and liquid velocity in airlift loop reactors containing highly viscous Newtonian liquids. Chem. Eng. Sci., 46, 2951-2954. DOI: 10.1016/0009-2509(91)85165-T.[Crossref]
  • Gavrilescu M., Tudose R.Z., 1998 Concentric-tube airlift bioreactors. Part I: Effects of geometry on gas holdup. Bioprocess Eng., 19, 37-44. DOI: 10.1007/s004490050480.[Crossref]
  • Grzywacz R., 2008. Experimental verification of hydrodynamic models for airlift reactor. Technical Journal - Mechanics. Cracow University of Technology, (105) 5-M, 151-158.
  • Grzywacz R., 2009. Influence of construction and process parameters on gas holdup coefficient in downcomer of airlift reactor. Inż. Aparat. Chem, 48, 76-78.
  • Grzywacz R., Lubaś P., 2006. Effect of operational conditions on the aeration of an airlift reactor. Analysis of the steady states. Chem. Process Eng., 27, 1361-1376.
  • Heijnen J.J., Hols J., van der Lans R.G.J.M., van Leeuwen H.L.J.M., Mulder A., Weltevrede R., 1997. A simple hydrodynamic model for the liquid circulation velocity in a full scale two- and three-phase internal airlift reactor operating in the gas recirculation regime. Chem. Eng. Sci., 52, 2527-2540. DOI: 10.1016/S0009-2509(97)00070-5.[Crossref]
  • Kanai T., Ichikawa J., Yoshikawa H., Kawase Y., 2000. Dynamic modelling and simulation of continuous airlift bioreactors. Bioproc. Eng., 23, 213-220. DOI: 10.1007/s004499900154.[Crossref]
  • Kanai T., Uzumaki T., Kawase Y., 1996. Simulation of airlift bioreactors: Steady-state performance of continuous culture processes. Comp. Chem. Eng., 20, 1089-1099. DOI: 10.1016/0098-1354(95)00225-1.[Crossref]
  • Korpijarvi J., Oinas P., Reunanen J., 1999. Hydrodynamics and mass transfer in an airlift reactor. Chem. Eng. Sci., 54, 2255-2262. DOI: 10.1016/S0009-2509(98)00439-4.[Crossref]
  • Marchuk J.C., Stein Y., Mateles R.I., 1980. Distributed parameter model of an airlift fermentor. Biotechnol. Bioeng., 22, 1189-1211. DOI: 10.1002/bit.260220607.[Crossref]
  • Pawlowsky U., Howell J.A., 1973. Mixed culture biooxidation of phenol. I. Determination of kinetic parameters. Biotechnol. Bioeng., 15, 889-896. DOI: 10.1002/bit.260150506.[Crossref]
  • Sikula I., Markoš J., 2008. Modelling of enzymatic reaction in an airlift reactor using an axial dispersion model. Chemical Papers, 62, 10-17. DOI: 10.2478/s11696-007-0073-9.[Crossref][WoS]
  • Vial Ch., Poncin S., Wild G., Midoux N., 2001. A simple method for regime identification and flow charactersation in bubble columns and airlift reactors. Chem. Eng. Proc., 40, 135-151. DOI: 10.1016/S0255-2701(00)00133-1.[Crossref]
  • Znad H., Báleš V., Markoš J., Kawase Y., 2004. Modelling and simulation of airlift bioreactors. Biochem. Eng. Journal., 21, 73-81. DOI: 10.1016/j.bej.2004.05.005.[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_v10176-012-0027-9
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.