Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2012 | 33 | 2 | 279-290

Article title

Brownian dynamics for calculation of the single fiber deposition efficiency of submicron particles

Content

Title variants

Languages of publication

EN

Abstracts

EN
The motion of submicron particles involves the deterministic terms resulting from the aerodynamic convection and/or electrostatic attraction, and the stochastic term from the thermal displacement of particles. The Langevin equation describes such behavior. The Brownian dynamics algorithm was used for integration of the Langevin equation for the calculation of the single fiber deposition efficiency. Additionally the deterministic and stochastic of the particle motion were derived, using the Lagrangian and Eulerian approaches of particle movement and balance, for the calculation of the single fiber deposition efficiency due to both mechanisms separately. Combination of the obtained results allows us for calculation of the coupling effect of inertia and interception with the Brownian diffusion in a form of correlation. The results of calculation show that the omitting of the coupling effect of particular mechanism and using the simple additive rule for determination of the single fiber deposition efficiency introduces significant error, especially for particles with diameter below 300 nm.

Publisher

Year

Volume

33

Issue

2

Pages

279-290

Physical description

Dates

published
1 - 6 - 2012
online
5 - 7 - 2012

Contributors

author
  • Department of Chemical and Process Engineering, Warsaw University of Technology, ul. Waryńskiego 1, 00-645 Warsaw, Poland
  • Department of Chemical and Process Engineering, Warsaw University of Technology, ul. Waryńskiego 1, 00-645 Warsaw, Poland
author
  • Department of Chemical and Process Engineering, Warsaw University of Technology, ul. Waryńskiego 1, 00-645 Warsaw, Poland

References

  • Chandrasekhar S., 1943. Stochastic problems in physics and astronomy. Rev. Mod. Phys., 15, 1-89. DOI: 10.1103/RevModPhys.15.1[Crossref]
  • Davies C.N., 1973. Air Filtration. Academic Press, London.
  • Gradoń L., Podgórski A., 1996. Deposition of inhaled particles. Discussion of present modeling techniques. J. Aerosol Med., 9, 343-355. DOI: 10.1089/jam.1996.9.343.[Crossref]
  • Hinds W.C., 1999. Aerosol Technology. John Wiley & Sons, New York.
  • Huang Ch., Tsai Ch., 2003. Mechanism of particle impaction and filtration by the dry porous metal substrates of an inertial impactor. Aerosol Sci. Technol., 37, 486-493. DOI: 10.1080/02786820300968.[Crossref]
  • Kalos M.H., Whitlock P.A., 2008. Monte Carlo Method. Whiley-VCH Verlag, Weinheim.
  • Kim S.C., Wang J., Emery M.S., Shin W.G., Mulholland G.W., Pui D.Y.H., 2009. Structural property effect of nanoparticle agglomerates on particle penetration through fibrous filter, Aerosol Sci. Technol., 43, 344-355. DOI: 10.1080/02786820802653763.[WoS][Crossref]
  • Kuwabara S., 1959. The forces experienced by randomly distributed parallel circular cylinders or spheres in a viscous flow at small reynolds numbers. J. Phys. Soc. Japan, 14, 527-532. DOI: 10.1143/JPSJ.14.527.[Crossref]
  • Marjinissen J., Gradoń L. (Eds.), 2010. Nanoparticles in medicine and environment. Springer, Heidelberg.
  • Podgórski A., 2002. On the transport, deposition and filtration of aerosol particles: selected problems, Oficyna Wydawnicza PW, Warszawa.
  • Regan B.D., Raynor P.C., 2009. Single-fiber diffusion efficiency for elliptical fibers, Aerosol Sci. Technol., 43, 533-543. DOI: 10.1080/02786820902777215.[Crossref][WoS]
  • Schuss Z., 1980. Theory and application of stochastic differential equations. John Wiley & Sons Inc., New York.
  • Van Gulijk C, Bal E., Schmidt-Ott A., 2009. Experimental evidence of reduced sticking of nanoparticles on a metal grid. J. Aerosol Sci., 40, 362-369. DOI: 10.1016/j.jaerosci.2008.12.005.[WoS][Crossref]
  • Uhlenbeck G.E., Ornstein L.S., 1930. On the theory of Brownian motion, Phys. Rev., 36, 823-841. DOI: 10.1103/PhysRev.36.823.[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_v10176-012-0025-y
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.