Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2012 | 33 | 2 | 231-242

Article title

Pollutant emission from a heat station supplied with agriculture biomass and wood pellet mixture

Content

Title variants

Languages of publication

EN

Abstracts

EN
Tests for combustion of hay and sunflower husk pellets mixed with wood pellets were performed in a horizontal-feed as well as under-feed (retort) wood pellet furnace installed in boilers with a nominal heat output of 15 and 20 kW, located in a heat station. During the combustion a slagging phenomenon was observed in the furnaces. In order to lower the temperature in the furnace, fuel feeding rate was reduced with unaltered air stream rate. The higher the proportion of wood pellets in the mixture the lower carbon monoxide concentration. The following results of carbon monoxide concentration (in mg/m3 presented for 10% O2 content in flue gas) for different furnaces and fuel mixtures (proportion in wt%) were obtained: horizontal-feed furnace supplied with hay/wood: 0/100 - 326; 30/70 - 157; 50/50 - 301; 100/0 - 3300; horizontal-feed furnace supplied with sunflower husk/wood: 50/50 - 1062; 67/33 - 1721; 100/0 - 3775; under-feed (retort) furnace supplied with hay/wood: 0/100 - 90; 15/85 - 157; 30/70 - 135; 50/50 - 5179; under-feed furnace supplied with sunflower husk/wood: 67/33 - 2498; 100/0 - 3128. Boiler heat output and heat efficiency was low: 7 to 13 kW and about 55%, respectively, for the boiler with horizontal-feed furnace and 9 to 14 kW and 64%, respectively, for the boiler with under-feed furnace.

Publisher

Year

Volume

33

Issue

2

Pages

231-242

Physical description

Dates

published
1 - 6 - 2012
online
5 - 7 - 2012

Contributors

  • Institute of Environmental Engineering, Division of Heating, Poznan University of Technology, Air Conditioning and Air Protection, Piotrowo 3A, 60-965 Poznań, Poland
  • Institute of Environmental Engineering, Division of Heating, Poznan University of Technology, Air Conditioning and Air Protection, Piotrowo 3A, 60-965 Poznań, Poland

References

  • Colannino J., 2006. Modeling of combustion systems. A practical approach. CRC Press Taylor & Francis Group, USA.
  • Dembiras A., 2004. Combustion characteristics of different biomass fuels. Progress Energy Combust. Sci., 30, 219-230. DOI: 10.1016/j.pecs.2003.10.004.[Crossref]
  • EN 12048:1999. Solid fertilizers and liming materials-Determination of moisture content-Gravimetric method by drying at (105 ±2)°C.
  • Gible C., O'hman M., Lindstrom E., Bostrom D., Backman R., Samuelsson R., Burvall J., 2008. Slagging characteristics during residential combustion of biomass pellets. Energy Fuels, 22, 3536-3543. DOI: 10.1021/ef800087x.[WoS][Crossref]
  • González J.F., González-Garcia C.M., Ramiro A., González J., Sabio E., Gañán J., Rodriguez M.A., 2004. Combustion optimisation of biomass residue pellets for domestic heating with a mural boiler. Biomass Bioenergy, 27, 145-154. DOI: 10.1016/j.biombioe.2004.01.004.[Crossref]
  • Johanson S.L., Leckner B., Gustavsson L., Cooper D., Tullin C., Potter A., 2004. Emission characteristics of modern and old-type residential boilers fired with wood logs and wood pellets. Biomass Bioenergy, 38, 4183-4195. DOI: 10.1016/j.atmosenv.2004.04.020.[Crossref]
  • Juszczak M., 2010. Pollutant concentrations from a heat station supplied with pine wood logs. Chem. Process Eng., 31, 373-386.
  • Juszczak M., 2011. Pollutant concentrations from deciduous wood fuelled heat stations. Chem. Process Eng., 32, 41-45. DOI: 10.2478/v10176-011-0004-8.[WoS][Crossref]
  • Kjällstrand J., Olsson M., 2004. Chimney emissions from small-scale burning of pellets and fuelwood - examples referring to different combustion appliances. Biomass Bioenergy, 27, 557-561. DOI: 10.1016/j.biombioe.2003.08.014.[Crossref]
  • Mediavilla I., Fernández M., J., Esteban L.,S., 2009. Optimization of pelletization and combustion in a boiler of 17.5 kWth for vine shoots and industrial cork residua. Fuel Process. Technol., 90, 621-628. DOI: 10.1016/j.fuproc.2008.12.009.[Crossref][WoS]
  • Mroczek K., Kalisz S., Pronobis M., Sołtys J., 2011. The effect of halloysite additive on operation of boilers firing agricultural biomass. Fuel Process. Technol.,92, 845-855. DOI: 10.1016/j.fuproc.2010.11.020.[Crossref][WoS]
  • Nussbaumer T., 2003. Combustion and co-combustion of biomass: fundamentals, technologies and primary measures for emission reduction. Energy Fuels, 17,1510-1521. DOI:10.1021/ef030031q.[Crossref]
  • Öhman M., Boman C., Hedman H., Nordin A., Boström D., 2004. Slagging tendencies of wood pellet ash during combustion in residential pellet burners. Biomass Bioenergy, 27, 585-596. DOI: 10.1016/j.biombioe.2003.08.016.[Crossref]
  • Olsson M., Kjällstrand J., 2004. Emission from burning of softwood pellets. Biomass Bioenergy, 27, 607-611. DOI: 10.1016/j.biombioe.2003.08.018.[Crossref]
  • PN-EN 303-5: 2004. Heating boilers, part5. Heating boilers for solid fuels, hand and automatically stocked nominal heat output of up to 300 kW. Terminology, requirements and marking.
  • Poskrobko S., Łach J., Król D., 2010a. Experimental investigation of hydrogen chloride bonding with calcium hydroxide in the furnace of a stoker-fired boiler. Energy Fuels, 24, 1948-1957. DOI: 10.1021/ef901534d.[Crossref]
  • Poskrobko S., Łach J., Król D., 2010b. Experimental investigation of hydrogen chlorine bonding with limestone and dolomite in the furnace of a stoker-fired boiler. Energy Fuels, 24, 5851-5858. DOI: 10.1021/ef101048k.[Crossref]
  • Poskrobko S., Łach J., Król D., 2012. Hydrogen chloride bonding with calcium hydroxide in combustion and two-stage combustion of fuels from waste. Energy Fuels, 26, 842-853. DOI: 10.1021/ef2016599.[WoS][Crossref]
  • Rybak W., 2006. Bio-fuels combustion and co-combustion. Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław (in Polish).
  • Vassilev S.V., Baxter D., Andersen L.K., Vassileva C.G., 2010. An overview of the chemical composition of biomass. Fuel, 89, 913-933. DOI: 10.1016/j.fuel.2009.10.022.[Crossref][WoS]
  • Venkataraman C., Maheswara Rao G.U., 2001. Emission factors of carbon monoxide and size-resolved aerosols from biofuel combustion. Environ. Sci. Technol., 35, 2100-2107. DOI:10.1021/es001603d.[PubMed][Crossref]
  • Verma V.K. Bram S., Gautier G., De Ruyck J., 2011. Performance of a domestic pellet boiler as a function of operetional loads: Part-2. Biomass Bioenergy, 35, 272-279. DOI: 10.1016/j.biombioe.2010.08.043.[WoS][Crossref]
  • Werther J., Saenger M., Hartge E.-U., Ogada T., Siagi Z., 2000. Combustion of agricultural residues. Progress Energy Combust. Sci., 26, 1-27. DOI: 10.1016/S0360-1285(99)00005-2.[Crossref]
  • Wiinikka H., Gebart R., Boman C., Boström D., Nordin A., Öhman M., 2006. High-temperature aerosol formation in wood pellet flames: Spatially resolved measurements. Combust. Flame, 147, 278-293, DOI: 10.1016/j.combustflame.2006.08.009.[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_v10176-012-0020-3
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.