Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2012 | 33 | 1 | 85-94

Article title

Kinetic analysis of thermogravimetric data collected from bigger samples

Content

Title variants

Languages of publication

EN

Abstracts

EN
Results for microcrystalline cellulose pyrolysis are presented, which includes thermogravimetric measurements and kinetic analysis of experimental data. The effect of sample mass size and heating rate on estimated values of activation energy and pre-exponential factor is demonstrated and a simple modification of procedure is proposed that allows for the correct values of kinetic parameters regardless of the experimental conditions. The efficiency of the proposed method is confirmed for two endothermic chemical reactions. A method of nonlinear regression is used for calculation of kinetic parameters for a single or TG curve or several curves simultaneously.

Publisher

Year

Volume

33

Issue

1

Pages

85-94

Physical description

Dates

published
1 - 3 - 2012
online
6 - 3 - 2012

Contributors

author
  • Faculty of Process and Environmental Engineering, Department of Safety Engineering, Technical University of Lodz, ul. Wólczańska 213, 90-924 Łódź, Poland
  • Faculty of Process and Environmental Engineering, Department of Safety Engineering, Technical University of Lodz, ul. Wólczańska 213, 90-924 Łódź, Poland

References

  • Babu, B. A., Chaurasia, A. S., 2004. Pyrolysis of biomass: improved models for simultaneous kinetics and transport of heat, mass and momentum. Energy Convers. Management, 45, 1297. DOI:10.1016/j.enconman.2003.09.013.[Crossref]
  • Cabellero, J. A., Front, R., Marcillam, A. Conesa, J. A., 1995. New kinetic model for thermal decomposition of heterogeneous materials. Ind. Eng. Chem. Res., 34, 806. DOI: 10.1021/ie00042a012.[Crossref]
  • Conesa J. A., Marcilla A., Caballero J. A., Font R., 2001. Comments on the validity and utility of the different methods for kinetic analysis of thermogravimetric data. J. Anal. Applied Pyrolysis, 58-59, 617-633. DOI:10.1016/S0165-2370(00)00130-3.[Crossref]
  • Di Blasi C., 1998. Comparison of semi-global mechanisms for primary pyrolysis of lignocellulosic fuels. J. Anal. Appl. Pyrolysis, 47, 43. DOI:10.1016/S0165-2370(98)00079-5.[Crossref]
  • Di Blasi C., 2009. Combustion and gasification rates of lignocellulosic chars. Progr. Energ. Comb. Sci., 35, 121-140. DOI:10.1016/j.pecs.2008.08.001.[Crossref]
  • Galwey A. K., Brown M. E., 1998. Kinetic background to thermal analysis and calorimetry, In: Brown M. E. (Ed.), Handbook of Thermal Analysis and Calorymetry, Vol. 1: Principles and Practice. Elsevier Science B. V., 147-224.
  • Gronli M., Antal M. J., Várhegyi G., 1999. A round-robun study of cellulosepyrolysis kinetics by thermogravimetry. Ind. Eng. Chem. Res., 38, 2238. DOI: 10.1021/ie980601n.[Crossref]
  • Hagge M., Bryden K. M., 2002. Modeling the impact of shrinkage on the pyrolysis of dry biomass. Chem. Eng. Sci., 57, 2811. DOI:10.1016/S0009-2509(02)00167-7.[Crossref]
  • Jang J., Tanguy P. A., Roy C., 1995. Heat transfer, mass transfer and kinetics study of the vacuum pyrolysis of a large used tire particles. Chem. Eng. Sci., 50, 1909. DOI:10.1016/0009-2509(95)00062-A.[Crossref]
  • Kissinger H. E., 1956. Variation of peak temperature with heating rate in differential thermal analysis. J. Res. Natl. Bur. Stand., 57, 2712.
  • Ledakowicz S., Nowicki L., Stolarek P., 2003. Analysis and modeling of gas-solid reactors using microreactors, In: Burghardt A. (Ed.), Multiphase and multifunctional reactors for the basic chemical, biochemical and environmental processes. ARGI, Wrocław, 273-302 (in Polish).
  • Narayan R., Antal M. J., 1996. Thermal lag, fusion, and the compensation effect during biomass pyrolysis. Ind. Eng. Chem. Res., 35, 1711-1721. DOI: 10.1021/ie950368i.[Crossref]
  • Piddubniak O., Ledakowicz S., Nowicki L., 2011. New approach to a problem of heat transfer with chemical reaction in a cylinder of finite dimensions. Int. J. Heat Mass Trans., 54, 338-354. DOI:10.1016/j.ijheatmasstransfer.2010.09.038.[Crossref]
  • Pyle D. L., Zaror C. A., 1984. Heat transfer and kinetics in the low temperature pyrolysis of solids. Chem. Eng. Sci., 39, 147-158. DOI: 10.1016/0009-2509(84)80140-2.[Crossref]
  • Stenseng M., Jensen A., Dam-Johansen K., 2001. Investigation of biomass pyrolysis by thermogravimetric analysis and differential scanning calorimetry. J. Anal. Appl. Pyrol., 58-59, 765. DOI:10.1016/S0165-2370(00)00200-X.[Crossref]
  • Stolarek P., Ledakowicz S., Nowicki L., 2006. Application of selected methods of thermal analysis in determination of thermal decomposition kinetics of biomass. Chem. Process Eng., 27, 1309-1323.
  • Völker S., Rieckmann T., 2002. Thermokinetic investigation of cellulose pyrolysis - impact of initial and final mass on kinetic results. J. Anal. Appl. Pyrolysis, 62, 165. DOI:10.1016/S0165-2370(01)00113-9.[Crossref]
  • Vyazovkin S., Wight C. A., 1998. Isothermal and non-isothermal kinetics of thermally stimulated reactions of solids. Int. Rev. Phys. Chem., 17, 407-433. DOI: 10.1080/014423598230108.[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_v10176-012-0008-z
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.