Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2011 | 28 | 5-13

Article title

Morphometric Study for Estimation and Validation of Trunk Transverse Surface Area To Assess Human Drag Force on Water

Content

Title variants

Languages of publication

EN

Abstracts

EN
The aim of this study was to compute and validate estimation equations for the trunk transverse surface area (TTSA) to be used in assessing the swimmer's drag force in both genders. One group of 133 swimmers (56 females, 77 males) was used to compute the estimation equations and another group of 131 swimmers (56 females, 75 males) was used for its validations. Swimmers were photographed in the transverse plane from above, on land, in the upright and hydrodynamic position. The TTSA was measured from the swimmer's photo with specific software. Also measured was the height, body mass, biacromial diameter, chest sagital diameter (CSD) and the chest perimeter (CP). With the first group of swimmers, it was computed the TTSA estimation equations based on stepwise multiple regression models from the selected anthropometrical variables. For males TTSA=6.662*CP+17.019*CSD-210.708 (R2=0.32; Ra2=0.30; P<0.01) and for females TTSA=7.002*CP+15.382*CSD-255.70 (R2=0.34; Ra2=0.31; P<0.01). For both genders there were no significant differences between assessed and estimated mean TTSA. Coefficients of determination for the linear regression models between assessed and estimated TTSA were R2=0.39 for males and R2=0.55 for females. More than 80% of the plots were within the 95% interval confidence for the Bland-Altman analysis in both genders.

Publisher

Year

Volume

28

Pages

5-13

Physical description

Dates

published
1 - 6 - 2011
online
4 - 7 - 2011

Contributors

author
  • Polytechnic Institute of Bragança, Bragança, Portugal
author
author
author

References

  • Baldari C, Bonavolontà V, Emerenziani GP, Gallotta MC, Silva AJ, Guidetti L. Accuracy, reliability, linearity of Accutrend and Lactate Pro versus EBIO plus analyzer. Eur J Appl Physiol, 2009; 107: 105-111[Crossref][PubMed][WoS]
  • Barbosa TM, Fernandes RJ, Morouço P, Vilas-Boas JP. Predicting the intra-cyclic variation of the velocity of the centre of mass from segmental velocities in butterfly stroke: a pilot study. J Sport Sci Med, 2008; 7: 201-209
  • Barbosa TM, Bragada JA, Reis VM, Marinho DA, Carvalho C, Silva AJ. Energetics and biomechanics as determining factors of swimming performance: updating the state of the art. J Sci Med Sports, 2010a; 13: 262-269[WoS][Crossref]
  • Barbosa TM, Costa MJ, Marinho DA, Coelho J, Moreira M, Silva AJ. Modeling the links between age-group swimming performance, energetic and biomechanic profiles. Ped Exerc Sci, 2010b; 22: 379-391
  • Barbosa TM, Costa MJ, Marques MC, Silva AJ, Marinho DA. A model for active drag force exogenous variables in young swimmers. J Hum Sport Exerc, 2010c; 5: 379-388[Crossref]
  • Bland JM, Altman DG. Statistical method for assessing agreement between two methods of clinical measurement. The Lancet, 1986; i: 307-310
  • Caspersen C, Berthelsen PA, Eik M, Pâkozdi C, Kjendlie P-L. Added mass in human swimmers: age and gender differences. J Biomech, 2010; 43: 2369-2373[Crossref][PubMed][WoS]
  • Clarys JP, Jiskoot J, Risjken H, Brouwer PJ. Total resistance in water and its relationships to body form. In: Biomechanics IV. Eds: Nelson, RC and Morehouse, CA. Baltimore: University Park Press pp. 187-196, 1974
  • Clarys JP. Human morphology and hydrodynamics. In: Swimming III. Eds: Terauds, J and Bedingfield, EW. Baltimore: University Park Press pp. 3-42, 1979
  • di Prampero P, Pendergast D, Wilson D, Rennie D. Energetics of swimming in man. J Appl Physiol, 1974; 37: 1-5
  • Hollander P, de Groot G, van Ingen Schenau G, Toussaint HB, de Best W, Peeters W, Meulemans A, Schreurs W. Measurement of active drag during Crawl stroke swimming. J Sports Sci, 1986; 4: 21-30[Crossref]
  • Hopkins WG. Bias in Bland-Altman but not regression validity analyses. Sportscience, 2004; 8: 42-46
  • Huijing P, Toussaint H, Mackay R, Vervoon K, Clarys JP, Hollander AP. Active drag related to body dimensions. In: Swimming Science V. Eds: Ungerechts, B, Wilke, K, and Reischle, K. Illinois: Human Kinetics Books pp. 31-37, 1988
  • Kjendlie P-L, Stallman RK. Drag characteristics of competitive swimming children and adults. J Appl Biomech, 2008; 24: 35-42[PubMed]
  • Knechtle B, Baumann B, Knechtle P, Wirth A, Rosemann T. A Comparison of Anthropometry between Ironman Triathletes and Ultra-swimmers. J Hum Kinetics, 2010; 24: 57-64
  • Kolmogorov S, Duplishcheva O. Active drag, useful mechanical power output and hydrodynamic force in different swimming strokes at maximal velocity. J Biomech, 1992; 25: 311-318[Crossref][PubMed]
  • Kolmogorov S, Lyapin S, Rumyantseva O, Vilas-Boas JP. Technology for decreasing active drag at maximal swimming velocity. In: Applied Proceedings of the XVIII International Symposium on Biomechanics in Sports - Swimming. Eds: Sander, RH and Hong Y. Edinburgh: Faculty of Education of the University of Edinburgh pp. 39-47, 2000
  • Kolmogorov S, Rumyantseva O, Gordon B, Cappaert, JM. Hydrodynamic characteristics of competitive swimmers of different genders and performance levels. J Appl Biomech, 1997; 13: 88-97
  • Kristensen MT, Bandholm T, Holm B, Ekdahl C, Kehlet H. Timed up & go test score in patients with hip fracture is related to the type of walking aid. Arch Physio Med Rehab, 2009; 90: 1760-1765[WoS]
  • Marinho DA, Barbosa TM, Klendlie P-L, Vilas-Boas JP, Alves FB, Rouboa AI, Silva AJ Swimming Simulation. In: Computational Fluid Dynamics for sport simulation. Eds: Peter M. Heidelberg: Springer-Verlag pp. 33-61, 2009
  • Marinho DA, Barbosa TM, Garrido N, Costa AM, Reis VM, Silva AJ, Marques MC. Can 8-weeks of training affect active drag in age-group swimmers? J sport Sci Med, 2010b; 9: 71-78
  • Marinho DA, Barbosa TM, Mantripragada N, Vilas-Boas JP, Rouard AI, Mantha VR, Rouboa AI, Silva AJ. The gliding phase in swimming: the effect of water depth. In: Biomechanics and Medicine in Swimming XI. Eds: Kjendlie, P-L, Stallman, TK and Cabri, J. Oslo: Norwegian School of Sport Sciences pp. 122-124, 2010a
  • Mazza J, Ackland TR, Bach T, Cosolito P. Absolute body size. In: Kineanthropometry in Aquatic Sports. Eds: Carter, L and Ackland TR. Champaign, Illinois: Human Kinetics pp. 15-54, 1994
  • Nicolas G, Bideau B, Colobert B, Berton E. How are Strouhal number, drag, and efficiency adjusted in high level underwater monofin-swimming? Hum Mov Sci, 2007; 26 426-442[PubMed][WoS][Crossref]
  • Nicolas G, Bideau B. A kinematic and dynamic comparison of surface and underwater displacement in high level monofin swimming. Hum Mov Sci, 2009; 28: 480-493[Crossref][PubMed][WoS]
  • Pendergast DR, Capelli C, Craig AB, di Prampero PE, Minetti AE, Mollendorf J, Termin II, Zamparo P. Biophysics in swimming. In: Biomechanics and Medicine in Swimming X. Eds: Vilas-Boas, JP, Alves, F and Marques, A. Porto: Portuguese Journal of Sport Science pp. 185-189, 2006.
  • Siahkouhian M, Hedayatneja M. Correlations of anthropometric and body composition variables with the performance of young elite weightlifters. J Hum Kinetics, 2010; 25: 125-131
  • Silva AJ, Rouboa A, Moreira A, Reis VM, Alves F, Vilas-Boas JP, Marinho DA. Analysis of drafting effects in swimming using computational fluid dynamics. J Sport Sci Med, 2008; 7: 60-66
  • Strzała M, Tyka A, Zychowska M, Woznicki P. Components of physical work capacity, somatic variables and technique in relation to 100 and 400m time trials in young swimmers. J Hum Kinetics, 2005; 14: 105-116
  • Strzała M, Tyka A, Krężałek P. Physical endurance and swimming technique in 400 meter front crawl race. J Hum Kinetics, 2007; 18: 73-86
  • Tousssaint HB, Roos P, Kolmogorov S. The determination of drag in front crawl swimming. J Biomech, 2004; 37: 1655-1663[Crossref]
  • Wolfram U, Wilke HJ, Zysset PK. Valid micro finite element models of vertebral trabecular bone can be obtained using tissue properties measured with nanoindentation under wet conditions. J Biomech, 2010; 43: 1731-1737[WoS][PubMed][Crossref]
  • Zamparo P, Antonutto G, Francescato MP, Girardis M, Sangoi R, Soule RG, Pendergast DR. Effects of body size, body density, gender and growth on underwater torque. Scand J Med Si Sports, 1996; 6: 273-280
  • Zamparo P, Gatta G, Pendergast D, Capelli C. Active and passive drag: the role of trunk incline. Eur J Appl Physiol, 2009; 106: 195-205[Crossref][WoS][PubMed]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_v10078-011-0017-x
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.