Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2008 | 20 | 5-22

Article title

Plasticity of the Cortical Motor System

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
The involvement of brain plastic mechanisms in the control of motor functions under normal and pathological conditions is described. These mechanisms are based on a similar principle as the neuronal models of neuronal plasticity - long-term potentiation (LTP), and long-term depression (LTD). In the motor cortex, LTP-like phenomena play a role in strengthening synaptic connections between pyramidal neurons. LTD is important for the elimination of unnecessary inputs to the cortex. The dynamic features of the primary motor cortex activity depend on particular neuronal interconnectivity within this area. The pyramidal cells send horizontal collaterals to adjacent subregions of the primary motor cortex, and so can either excite or inhibit remote pyramidal cells. These connections can expand or shrink depending on actual physiological demands, and play a role in skill learning.

Publisher

Year

Volume

20

Pages

5-22

Physical description

Dates

published
1 - 1 - 2008
online
13 - 1 - 2009

Contributors

  • Polish Academy of Sciences, English Division, Warsaw Medical University

References

  • Buonomano D. V., Merzenich M. M. Cortical plasticity: from synapses to maps. Annual Review of Neuroscience, 1998. 21:149-186.
  • Cauraugh J. H., Summers J. J. Neural plasticity and bilateral movements: a rehabilitation approach for chronic stroke. Progress in Neurobiology, 2005. 75: 309-320.
  • Chen J., Magavi S. S. P., Macklis J. D. Neurogenesis of corticospinal motor neurons extending spinal projections in adult mice Proceedings of the National Academy of Sciences USA, 2004. 95 101: 16357-16362.
  • Chen R., Gerloff C., Hallett M., Cohen L. G. Involvement of the ipsilateral motor cortex in finger movements of different complexities. Annals of Neurology, 1997. 41: 247-254.
  • Cramer S. C., Nelles G., Benson R. R., Kaplan J. D., Parker R. A., Kwong K. K., Kennedy D. N., Finklestein S. P., Rosen B. R. A functional MRI study of subjects recovered from hemiparetic stroke. Stroke, 1997. 28:2518-2527.
  • Elbert T., Pantev C., Wienbruch C., Rockstroh B., Taub E. Increased cortical representation of the fingers of the left hand in string players. Science, 1995. 270: 305-307.
  • Fridman E. A., Hanakawa T., Chung M., Hummel F., Leiguarda R. C., Cohen L. G. Reorganization of the human ipsilesional premotor cortex after stroke. Brain, 2004. 127: 747-758.
  • Gauthier L. V., Taub E., Perkins Ch., Ortmann M., Mark V. W., Uswatte G. Remodeling the brain plastic structural brain changes produced by different motor therapies after stroke. Stroke, 2008. 39:1520-1525.[WoS]
  • Harris-Love M. L., Cohen L. G. Noninvasive cortical stimulation in neurorehabilitation: a review. Archives of Physical Medicine and Rehabilitation, 2006. 87, Supplement 2: S84 - S92.
  • Hebb D. O. The organization of behavior: a neuropsychological theory. 1949. Wiley, New York.
  • Hummel F., Celnik P., Giraux P., Floel A., Wu W.-H., Gerloff Ch., Cohen L. G. Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke. Brain, 2005. 128: 490-499.
  • Jin K., Wang X., Xie L., Mao X. O., Zhu W., Zhu W., Wang Y., Shen J., Mao Y., Banwait S., Greenberg D. A. Evidence for stroke-induced neurogenesis in the human brain. Proceedings of the National Academy of Sciences USA, 2006. 103: 13198-13202.
  • Karni A., Meyer G., Rey-Hipolito Ch., Jezzard P., Adams M. M., Turner R., Leslie G. Ungerleider L. G. The acquisition of skilled motor performance: fast and slow experience-driven changes in primary motor cortex. Proceedings of the National Academy of Sciences USA, 1998. 95:861-868.
  • Khedr E. M., Ahmed M. A., Fathy N, Rothwell J. C. Therapeutic trial of repetitive transcranial magnetic stimulation after acute ischemic stroke. Neurology, 2005. 65:466-468.
  • Kim Y.-H., Park J. W., Ko M.-H., Jang S-H., Lee P. K. W. Plastic changes of motor network after constraint-induced movement therapy. Yonsei Medical Journal, 2004. 44: 242-246.
  • Konorski J. Conditioned reflexes and neuron organization. 1948. Cambridge University Press, Cambridge.
  • Liepert J., Bauder H., Miltner W. H. R., Taub E., Weiller C. Treatment-induced cortical reorganization after stroke in humans. Stroke, 2000a. 31:1210-1216.
  • Liepert J., Storch P., Fritsch A., Weiller C. Motor cortex disinhibition in acute stroke. Clinical Neurophysiology, 2000b. 111: 671-676.
  • Liepert J., Uhde I., Gräf S., Leidner O., Weiller C. Motor cortex plasticity during forced-use therapy in stroke patients: a preliminary study. Journal of Neurology, 2001. 248: 315-321.
  • Liepert J. Motor cortex excitability in stroke before and after constraint-induced movement therapy. Cognitive Behavioral Neurology, 2006. 19:41-47.
  • Luft A. R., McCombe-Waller S., Whital J., Forrester L. W., Macko R., Sorkin J. D., Schulz J. B., Goldberg A. P., Hanley D. F. Repetitive bilateral arm training and motor cortex activation in chronic stroke: a randomized controlled trial. Journal of the American Medical Association, 2004. 292:1853-1861.
  • Magavi S. S., Leavitt B. R,. Macklis J. D. Induction of neurogenesis in the neocortex of adult mice Nature, 2000. 405: 951-955.
  • Malenka R. C., Bear M. F. LTP and LTD: an embarrassment of riches. Neuron, 2004. 44:5-21.
  • Mansur C. G., Fregni F., Boggio P. S. et al. A sham stimulation-controlled trial of rTMS of the unaffected hemisphere in stroke patients. Neurology, 2005. 64:1802-1804.
  • Mark V. W., Taub E., Morris D. M. Neuroplasticity and constraint-induced movement therapy. Europa Medicophysica, 2006. 42: 269-284.
  • McCombe Waller S, Whitall J. Central motor excitability with unilateral dominant, unilateral nondominant, and bilateral movement tasks in left and right handed adults. Journal of Neurologic Physical Therapy, 2004. 28:170 (cited by Hummel F. et al. 2005).
  • Mogilner A., Grossman J. A., Ribary U., Joliot M., Volkmann J., Rapaportt D., Beasley R. W., Llinas R. R. Somatosensory cortical plasticity in adult humans revealed by magnetoencephalography. Proceedings of the National Academy of Sciences USA, 1993. 90:3593-3597.
  • Mountz J. M. Nuclear medicine in the rehabilitative treatment evaluation in stroke recovery: role of diaschisis resolution and cerebral reorganization. Europa Medicophysica, 2007. 43: 221-239.
  • Nudo R. J. Postinfarct cortical plasticity and behavioral recovery. Stroke, 2007. 38: 840-845.[WoS]
  • Pascual-Leone A., Torres F. Plasticity of the sensorimotor cortex representation of the reading finger in Braille readers. Brain, 1993. 116:39-52.
  • Penfield W., Rasmussen T. The cerebral cortex of man. Macmillan, New York, 1957.
  • Rioult-Pedotti M-S., Friedman D., Hess G., Donoghue J. P. Strengthening of horizontal cortical connections following skill learning. Nature Neuroscience, 1998. 1:230-234.
  • Rossini P. M., Altamura C., Eerreri F., Melgari J.-M., Tecchio F., Tombini M., Pasqualetti P., Vernieri F. Neuroimaging experimental studies on brain plasticity in recovery from stroke. Europa Medicophysica, 2007. 43: 242-254.
  • Sanes J. N., Donoghue J. P. Plasticity and primary motor cortex. Annual Review of Neuroscience, 2000. 23:393-415[WoS]
  • Schieber M. H., Baker J. Descending control of movement. In: Fundamental Neuroscience, Second Edition. L. R. Squire et al. Eds. Academic Press, New York, pp 791-814
  • Serrien D. J., Strens L. H. A., Cassidy M. J., Thompson A. J., Brown P. Functional significance of the ipsilateral hemisphere during movement of the affected hand after stroke. Experimental Neurology, 2004. 190: 425-432.
  • Szaflarski J. P., Page S. J., Kissela B. M., Lee J.-H., Levine P., Strakowski S. M. Cortical reorganization following modified constraint-induced movement therapy: a study of 4 patients with chronic stroke. Archives of Physical Medicine and Rehabilitation, 2006. 87: 1052-1058.
  • Ward N. S., Cohen L. G. Mechanisms underlying recovery of motor function after stroke. Archives of Neurology, 2004. 61:1844-1848.
  • Whitall J., McCombe Waller S., Silver K. H., Macko R. F. Repetitive bilateral arm training with rhythmic auditory cueing improves motor function in chronic hemiparetic stroke. Stroke 2000;31:2390-2395.[WoS]
  • Ziemann U., Ishii K. Borgheresi A., Yaseen Z., Battaglia F., Hallett M., Cincotta M., Wassermann E. M. Dissociation of the pathways mediating ipsilateral and contralateral motor-evoked potentials in human hand and arm muscles. Journal of Physiology, 1999. 518: 895-906.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_v10078-008-0014-x
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.