Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2009 | 64 | 136-146

Article title

Advantages and risk related with carbon nanomaterials (CNMs) application for water remediation. Mini review

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
Water is one of the most valuable substances in the world and its availability in the form of potable and drinking water is of great importance for any society. Conventional water treatment methods have been reported to be ineffective in removing some kinds of organic pollutants including endocrine disrupting chemicals (EDCs), personal care products (PCP), pharmaceuticals, etc. Nanotechnology - especially application of the carbon based nanomaterials (CNMs) to water decontamination - is promising technology. The physico-chemical properties of CNMs (e.g. high surface area to volume ratio, high equilibrium rate) make them an excellent adsorbent which can be effectively used to remove pollutants from water. The present mini-review provides an overview of the research progress about organic chemical adsorption on CNMs in relation to water decontamination. The paper also discussed the possible risk related with desorption pharmaceuticals from CNMs.

Keywords

Year

Volume

64

Pages

136-146

Physical description

Dates

published
1 - 1 - 2009
online
22 - 1 - 2010

Contributors

author

References

  • Y. Ju-Nam and J. R. Lead, Sci. Total Environ., 400, 396 (2008).
  • W. Hannah and P. B. Thomson, J. Environ. Monitor., 10, 291 (2008).[Crossref]
  • SCENIHR. The appropriateness of existing methodologies to assess the potential risks associated with engineered and adventitious products of nanotechnologies. Scientific Committee on Emerging and Newly Identified Health Risks. (2005).
  • P. C. Ray, H. Yu and P. P. Fu, J. Environ. Sci. Heal. C, 27, 1 (2009).[Crossref]
  • P. M. Ajayan, Chem. Rev., 99, 1787 (1999).
  • S. J. Klaine, P. J. J. Alvarez, G. E. Batley, T. F. Fernandes, R. D. Handy, D. Y. Lyon, S. Mahendra, M. J. McLaughlin and J. R. Lead, Environ. Toxicol. Chem., 27, 1825 (2008).[Crossref]
  • S. Utsunomiya, K. A. Jensen, G. J. Keeler and R. C. Ewing, Environ. Sci. Technol., 36, 4943 (2002).
  • T. H. Lee, N. Yao, T. J. Chen and W. K. Hsu, Carbon, 40, 2275 (2002).[Crossref]
  • L. E. Murr and K. F. Soto, Mater. Char., 55, 50 (2005).[Crossref]
  • D. Heymann, L. W. Jenneskens, J. Jehlicka, C. Koper and E. Vlietstra, Carbon Nanostruct., 11, 333 (2003).[Crossref]
  • K. Donaldson, R. Aitken, L. Tran, V. Stone, R. Duffin, G. Forrest and A. Alexander, Toxicol. Sci., 92, 5 (2006).
  • N. B. Saleh, L. D. Pfefferle and M. Elimelech, Environ. Sci. Technol., 42, 7963 (2008).[Crossref]
  • K. Yang, L. Zhu and B. Xing, Environ. Sci. Technol., 40, 1855 (2006).[Crossref]
  • X. K. Cheng, A. T. Kan and B. B. Tomson, J. Chem. Eng. Data, 49, 675 (2004).[Crossref]
  • X. M. Yan, B. Y. Shi, J. J. Lu, C. H. Feng, H. X. Wang and H. X. Tang, J. Colloid Interf. Sci., 321, 30 (2008).
  • G. C. Chen, X. Q. Shan, Y. S. Wang, Z. G. Pei, X. E., Shen, B. Wen and G. Owens, Environ. Sci. Technol., 42, 8297 (2008).[Crossref]
  • B. Pan, D. Lin, H. Mashayekhi and B. Xing, Environ. Sci. Technol., 42, 5480 (2008).[Crossref]
  • L. Ji, W. Chen, L. Duan and D. Zhu, Environ. Sci. Technol., 43, 2322 (2009).[Crossref]
  • P. Oleszczuk, B. Pan and B. Xing, submitted.
  • R. Q. Long and R. T. Yang, J. Am. Chem. Soc., 123, 2058 (2001).
  • C. S.; Lu, Y. L.; Chung and K. F. Chang, Water Res., 39, 1183 (2005).
  • M. S. Mauter and M. Elimelech, Environ. Sci. Technol., 42, 5843 (2008).
  • D. Lin and B. Xing, Environ. Sci. Technol., 42, 7254 (2008).
  • W. Chen, L. Duan, L. Wang and D. Zhu, Environ. Sci. Technol., 42, (18), 6862 (2008).[Crossref]
  • B. Pan and B. Xing, Environ. Sci. Technol., 42, 9005 (2008).
  • H. Yan, A. J. Gong, H. S. He, J. Zhou, Y. X. Wei and L. Lv, Chemosphere, 62, 142 (2006).[Crossref]
  • H. F. Lecoanet, J. Y. Bottero and M. R. Wiesner, Environ. Sci. Technol., 38, 5164 (2004).
  • B. Quinn, F. Gagné and C. Blaise, Sci. Total Environ., 407, 1072 (2009).
  • J. C. Madden, S. J. Enoch, M. Hewitt and M. T. D. Cronin, Toxicol. Lett., 185, 85 (2009).
  • W. Chen, L. Duan and D. Zhu, Environ. Sci. Technol., 41, (24), 8295 (2007).[Crossref]
  • K. Yang, W. Wu, Q. Jing and L. Zhu, Environ. Sci. Technol., 42 (21), 7931 (2008).
  • X. Peng, Y. Li, Z. Luan, Z. Di, H. Wang, B. Tian and Z. Jia, Chem. Phys. Lett., 376, 154 (2003).
  • J. Rathousky and A. Zukal, Fullerene Sci. Technol., 8, 337 (2000).
  • K. Yang and B. Xing, Environ. Pollut., 145, 529 (2007).
  • R. D. Handy, T. B. Henry, T. M. Scown B. D. and C. R. Johnston, Ecotoxicology, 17, 396 (2008).[Crossref]
  • M. N. Moore, Environ. Intern., 32, 967 (2006).
  • A. Baun, S. N. Sørensen, R. F. Rasmussen, N. B. Hartmann and C. B. Koch, Aquat. Toxicol., 86, 379-387 (2008).[Crossref]
  • B. Nowack and D. T. Bucheli, Environ. Pollut., 150, 5 (2007).
  • G. Oberdörster, E. Oberdörster and J. Oberdörster, Environ. Health Persp., 113, 823 (2005).

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_v10063-008-0010-y
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.