Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2011 | 12 | 3 | 242-247

Article title

Effects of Fatigue Induced by Prolonged Gait When Walking on the Elderly

Content

Title variants

Languages of publication

EN

Abstracts

EN
Purpose. Fatigue has been pointed as a fall risk in the elderly; however, the effects of prolonged gait on neuromuscular recruitment and on its pattern remain unknown. The aim of this study was to evaluate the effects of prolonged gait on neuromuscular recruitment levels and spatial-temporal gait variables. Methods. Eight healthy older women (age: 72.63 ± 6.55 years) walked at their preferred walking speed for twenty minutes on a treadmill. The Root Mean Square (RMS) from the vastus-lateralis, femoral biceps, tibialis anterior and lateral gastrocnemius muscles were determined at the first and last minute of the test during the moments of Heel Strike (HS), Terminal Stance and Terminal Swing (TS). In addition, coactivation in the knee and ankle as well as the stride cadence and length were measured in the test. The two RMS data (taken at the first and last minute) were compared by means of a Student's t-test. Results. Twenty minutes of walking induced fatigue in the subjects, as observed through an increase in RMS, notably during the HS and TS. Coactivation was also influenced by the prolonged gait test. The only gait phase where a risk of falling was enhanced was the HS. Nonetheless, subjects developed strategies to maintain a safe motor pattern, which was evidenced by an increase in stride length and a decrease in stride cadence. Conclusion. Tests lasting just twenty minutes on a treadmill were enough to induce fatigue in older adults. However, the level of fatigue was not enough to present a danger or fall risk to elderly individuals.

Keywords

Publisher

Journal

Year

Volume

12

Issue

3

Pages

242-247

Physical description

Dates

published
1 - 9 - 2011
online
22 - 9 - 2011

Contributors

  • São Paulo State University, São Paulo, Brazil

References

  • Pratt D. J., Some aspects of modern orthotics. Physiol Meas, 1994, 15 (1), 1-27, doi: 10.1088/0967-3334/15/1/001.[Crossref][PubMed]
  • Helbostad J. L., Leirfall S., Moe-Nilssen R., Sletvold O., Physical fatigue affects gait characteristics in older persons. J Gerontol, 2007, 62 (9), 1010-1015.[Crossref]
  • Mian O. S., Thom J. M., Ardigo L. P., Narici M. V., Minetti A. E., Metabolic cost, mechanical work, and efficiency during walking in young and older men. Acta Physiol, 2006, 186 (2), 127-139, doi: 10.1111/j.1748-1716.2006.01522.x.[Crossref]
  • Lockhart T. E., Woldstad J. C., Smith J. L., Effects of age-related gait changes on the biomechanics of slips and falls. Ergonomics, 2004, 46 (12), 1136-1160, doi: 10.1080/0014013031000139491.[Crossref]
  • Watelain E., Barbier F., Allard P., Thevenon A., Angué J. C., Gait pattern classification of healthy elderly men based on biomechanical data. Arch Phys Med Rehabil, 2000, 81 (5), 579-586, doi: 10.1016/S0003-9993 (00)90038-8.[PubMed][Crossref]
  • Aagaard P., Simonsen E. B., Andersen J. L., Magnusson P., Dyhre-Poulsen P., Increased rate of force development and neural drive of human skeletal muscle following resistance training. J Appl Physiol, 2002, 93 (4), 1318-1326, doi: 10. 1152/japplphysiol. 00283. 2002.[PubMed][Crossref]
  • Lanza I. R., Russ D. W., Kent-Braun J. A., Age-related enhancement of fatigue resistance is evident in men during both isometric and dynamic tasks. J Appl Physiol, 2004, 97 (3), 967-975, doi: 10. 1152/japplphysiol.01351.2003.[PubMed][Crossref]
  • Vandervoort A. A., Aging of the human neuromuscular system. Muscle Nerve, 2002, 25 (1), 17-25, doi: 10.1002/mus.1215.[PubMed][Crossref]
  • Farina D., Fosci M., Merletti R., Motor unit recruitment strategies investigated by surface EMG variables. J Appl Physiol, 2002, 92 (1), 235-247.[PubMed]
  • Oliveira A. de S. C., Gonçalves M., EMG amplitude and frequency parameters of muscular activity: effect of resistance training based on electromyographic fatigue threshold. J Electromyogr Kinesiol, 2009, 19 (2), 295-303, doi: 10.1016/j.jelekin.2007.07.008.[WoS][Crossref]
  • Hortobágyi T., Solnik S., Gruber A., Rider P., Steinweg K., Helseth J. et al., Interaction between age and gait velocity in the amplitude and timing of antagonist muscle coactivation. Gait Posture, 2009, 29 (4), 558-564, doi: 10. 1016/j.gaitpost.2008.12.007.[Crossref][WoS]
  • Lockhart T. E., Kim S., Relationship between hamstring activation rate and heel contact velocity: factors influencing age-related slip-induced falls. Gait Posture, 2006, 24 (1), 23-34, doi: 10.1016/j.gaitpost.2005.06.016.[PubMed][Crossref]
  • Baratta R., Solomonow M., Zhou B. H., Letson D., Chuinard R., D'Ambrosia R., Muscular coactivation. The role of the antagonist musculature in maintaining knee stability. Am J Sports Med, 1988, 16 (2), 113-122, doi: 10.1177/036354658801600205.[Crossref][PubMed]
  • Van Dieën J. H., Cholewicki J., Radebold A., Trunk muscle recruitment patterns in patients with low back pain enhance the stability of the lumbar spine. Spine, 2003, 28 (8), 834-841.[PubMed][Crossref]
  • Kent-Braun J. A., Skeletal muscle fatigue in old age: whose advantage? Exerc Sport Sci Rev, 2009, 37 (1), 3-9, doi: 10.1097/JES.0b013e318190ea2e.[Crossref][WoS]
  • Giannesini B., Cozzone P. J., Bendahan D., Non-invasive investigations of muscular fatigue: metabolic and electromyographic components. Biochimie, 2003, 85 (9), 873-883, doi: 10.1016/S0300-9084(03)00124-X.[Crossref][PubMed]
  • Pereira M. P., Gonçalves M., Subjective, cardiovascular and EMG spectral recovery after lumbar extension exhaustion test. J Back Musculoskelet Rehabil, 2008, 21 (3), 175-183.
  • Huang Y. M., Chang Y. J., Hsu M. J., Chen C. L., Fang C. Y., Wong A. M. K., Errors in force generation and changes in controlling patterns following agonist muscle fatigue. JAB, 2009, 25 (4), 293-303.
  • Begg R. K., Palaniswami M., Owen B., Support vector machines for automated gait classification. IEEE Trans Biomed Eng, 2005, 52 (5), 828-838, doi: 10.1109/TBME.2005.845241.[Crossref][PubMed]
  • Buzzachera C. F., Elsangedy H. M., Hallage T., da Silva S. G., Physiological and perception parameters during preferred walking speed on previously sedentary women [in Portuguese]. Rev Bras Cineantropom Desempenho Hum, 2007, 9 (2), 170-176.
  • Khandoker A. H., Palaniswami M., Begg R. K., A comparative study on approximate entropy measure and poincaré plot indexes of minimum foot clearance variability in the elderly during walking. J Neuroeng Rehabil, 2008, 5 (4), doi: 10.1186/1743-0003-5-4.[WoS][PubMed][Crossref]
  • Voorrips L. E., Ravelli A. C. J., Dongelmans P. C. A., Deurenberg P., van Staveren W. A., A physical activity questionnaire for the elderly. Med Sci Sports Exerc, 1991, 23 (8), 974-979.[PubMed]
  • Matsas A., Taylor N., McBurney H., Knee joint kinematics from familiarised treadmill walking can be generalised to overground walking in young unimpaired subjects. Gait Posture, 2000, 11 (1), 46-53, doi: 10.1016/S0966-6362(99)00048-X.[Crossref][PubMed]
  • Malatesta D., Simar D., Dauvilliers Y., Candau R., Borrani F., Préfaut C. et al., Energy cost of walking and gait instability in healthy 65- and 80-yr-olds. J Appl Physiol, 2003, 95 (6), 2248-2256, doi: 10. 1152/japplphysiol.01106.2002.[Crossref]
  • Schmitz A., Silder A., Heiderscheit B., Mahoney J., Thelen D. G., Differences in lower-extremity muscular activation during walking between healthy older and young adults. J Electromyogr Kinesiol, 2009, 19 (6), 1085-1091, doi: 10.1016/j.jelekin.2008.10.008.[Crossref][WoS]
  • Falconer K., Winter D. A., Quantitative assessment of co-contraction at the ankle joint in walking. Electromyogr Clin Neurophysiol, 1985, 25 (2-3), 135-149.[PubMed]
  • Kellis E., Arabatzi F., Papadopoulos C., Muscle co-activation around the knee in drop jumping using the co-contraction index. J Electromyogr Kinesiol, 2003, 13 (3), 229-238, doi: 10.1016/S1050-6411(03)00020-8.[Crossref]
  • Kang H. G., Dingwell J. B., Separating the effects of age and walking speed on gait variability. Gait Posture, 2008, 27 (4), 572-577, doi: 10.1016/j.gaitpost.2007.07.009.[WoS][PubMed][Crossref]
  • Oliveira A. de S. C., Greco C. C., Pereira M. P., Figueira T. R., de Araújo Ruas V. D., Gonçalves M. P. et al., Physiological and neuromuscular profile during a bodypump session: acute responses during a high-resistance training session. J Strength Cond Res, 2009, 23 (2), 579-586, doi: 10.1519/JSC.0b013e318196b757.[Crossref][WoS]
  • Gonçalves M., Pereira M., Aguiar P., Rate of force development and co-activation around the knee in elderly fallers. In: XVIIth Congress of the International Society of Electrophysiology and Kinesiology, Ontario, Canada 2008.
  • Owings T. M., Grabiner M. D., Variability of step kinematics in young and older adults. Gait Posture, 2004, 20 (1), 26-29, doi: 10.1016/S0966-6362(03)00088-2.[Crossref]
  • Kerrigan D. C., Todd M. K., Della Croce U., Lipsitz L. A., Collins J. J., Biomechanical gait alterations independent of speed in the healthy elderly: evidence for specific limiting impairments. Arch Phys Med Rehabil, 1998, 79 (3), 317-322.[Crossref][PubMed]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_v10038-011-0025-7
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.