Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2010 | 11 | 1 | 58-65

Article title

Presentation of Acoustic Waves Propagation and Their Effects Through Human Body Tissues

Content

Title variants

Languages of publication

EN

Abstracts

EN
Three types of acoustic waves are mainly used in the medical field, Extracorporeal Shock Waves (ESWs), Pressure Waves (PWs) and Ultrasound (US). Shock waves are acoustic waves that are characterized by high pressure amplitudes and an abrupt increase in pressure that propagates rapidly through a medium. The energy distribution in the treatment area differs from being wide over a large area, or concentrated in a narrow treatment zone, and as such influences the therapeutic and biological effect of the shock wave. Pressure waves are usually generated by the collision of solid bodies with an impact speed of a few metres per second, far below the speed the shock wave travels. There are major differences between PWs and ESWs, concerning not only their physical characteristics and the technique used for generating them, but also the order of the parameters normally used. The simulation effects and therapeutic mechanisms seem to be similar, despite the physical differences and the resulting different application areas (on the surface and in depth respectively). Ultrasound therapy is one of the modalities of physical medicine used for pain management and for increasing blood flow and mobility. Ultrasound and ESWs - PWs differ, despite their acoustic relationship, basically because ESWs - PWs show large pressure amplitudes with direct mechanical effects and US propagates within periodic oscillations within a limited bandwidth, and mainly direct thermal effects. Acoustic waves have direct mechanical and mechanotransduction effects on the cells and ECM increasing porosity, angiogenesis, releasing growth factors, enhancing proteosynthesis and viscoelastisity and inducing histeogenesis and repair processes.

Publisher

Journal

Year

Volume

11

Issue

1

Pages

58-65

Physical description

Dates

published
1 - 6 - 2010
online
30 - 7 - 2010

Contributors

References

  • Wess, O., Physics and technology of shock wave and pressure wave therapy. ISMST Newsletter, 2006, 2 (1), 2-12. Avaliable from URL http://www.ismst.com/pdf/ISMST_Newsletter_2007-01_No2.pdf.
  • Wang, C. J., Wang, F. S., Yang, K. D., Weng LH., Hsu, C. C., Huang, C. S. et al., Shock wave therapy induces neovascularization at the tendon-bone junction. A study in rabbits. J Orthop Res, 2003, 21 (6), 984-989. DOI: 10.1016/S0736- 0266(03)00104-9.[Crossref][PubMed]
  • Martini, L., Giavaresi, G., Fini, M., Borsari, V., Torricelli, P., Giardino, R., Early effects of extracorporeal shock wave treatment on osteoblast-like cells: a comparative study between electromagnetic and electrohydraulic devices. J Trauma, 2006, 61 (5), 1198-1206. DOI: 10.1097/01.ta.0000203575.96896.34.[Crossref]
  • Wells, P. N. T., Biomedical ultrasonics. Academic Press, London 1977.
  • Dyson, M., Mechanisms involved in therapeutic ultrasound. Physiotherapy, 1987, 73, 116-120.
  • Prentice, W. E., Therapeutic modalities in sports medicine. 3rd ed. Mosby, St Louis 1994.
  • Jozsa, L., Kannus, P., Human tendons. Anatomy, physiology and pathology. Human Kinetics, Champaign 1997.
  • Odgen, J. A., Tóth-Kischkat, A., Schultheiss, R., Principles of shock wave therapy. Clin Orthop Relat Res, 2001, 387, 8-17. DOI: 10.1097/00003086-200106000-00003.[Crossref]
  • Chung, B., Wiley, J. P., Extracorporeal shockwave therapy: a review. Sports Med, 2002, 32 (13), 851-865.[Crossref][PubMed]
  • Gleitz, M., The meaning of the trigger of shock wave therapy in the treatment of radical cervicalbrachialgia [in German]. In: 53rd Annual Conference of the Southern German Orthopedic Association e.V. April, 2005, Baden-Baden, abstract, nr. 328.
  • Delius, M., Draenert, K., Diek, Y. A., Draenert, Y., Biological effects of shock waves: in vivo effect of high energy pulses on rabbit bone. Ultrasound Med Biol, 1995, 21 (9), 1219-1225.[Crossref][PubMed]
  • Johannes, E. J., Kaulesar Sukul, D. M. K. S., Matura, E., High-energy shock waves for the treatment of nonunions: an experiment on dogs. J Surg Res, 1994, 57 (2), 246-252. DOI: 10.1006/jsre.1994.1139.[PubMed][Crossref]
  • Rompe, J. D., Rosendahl, T., Schöllner, C., Theis, C., High-energy extracorporeal shock wave treatment of nonunions. Clin Orthop Relat Res, 2001, 387, 102-111.
  • Schaden, W., Fischer, A., Sailler, A., Extracorporeal shock wave therapy of nonunion or delayed osseous union. Clin Orthop Relat Res, 2001, 387, 90-94.
  • Wang, C. J., Chen, H. S., Chen, C. E., Yang, K. D., Treatment of nonunions of long bone fractures with shock waves. Clin Orthop Relat Res, 2001, 387, 95-101.
  • Ludwig, J., Lauber, S., Lauber, H. J., Dreisilker, U., Raedel, R., Hotzinger, H., High-energy shock wave treatment of femoral head necrosis in adults. Clin Orthop Relat Res, 2001, 387, 119-126.
  • Wang, C. J., Wang, F. S., Yang, K. D., Biological mechanism of musculoskeletal shockwaves. ISMST Newsletter, 2006, 1 (l), 5-11. Avaliable from URL http://www.ismst.com/pdf/ISMST_Newsletter_2006-03_No1.pdf.
  • Thiel, M., Application of shock waves in medicine. Clin Orthop Relat Res, 2001, 387, 18-21.
  • Wang, C. J., Wang, F. S., Huang, C. C., Yang, K. D., Weng, L. H., Huang, H. Y., Treatment of osteonecrosis of the femoral head: Comparison of extracorporeal shock waves with core decompression and bone-grafting. J Bone Joint Surg Am, 2005, 87 (11), 2380-2387. DOI: 10.2106/JBJS. E.00174.[PubMed][Crossref]
  • Sparsa, A., Lesaux, N., Kessler, E., Bonnetblanc, J. M., Blaise, S., Lebrun-Ly, V. et al., Treatment of cutaneous calcinosis in CREST syndrome by extracorporeal shock wave lithotripsy. J Am Acad Dermatol, 2005, 53 (5), Suppl., S263-S265. DOI: 10.1016/j.jaad.2005.04.010.[Crossref][WoS]
  • Schaden, W., Thiele, R., Kolpl, C., Pusch, A., Extracorporeal shock wave therapy (ESWT) in skin lesions. ISMST Newsletter, 2006, 2 (1), 13-14. Avaliable from URL http://www.ismst.com/pdf/ISMST_Newsletter_2007-01_No2.pdf.
  • Meirer, R., Kamelger, F. S., Huemer, G. M., Wanner, S., Piza- Katzer, H., Extracorporal shock wave may enhance skin flap survival in an animal model. Br J Plast Surg, 2005, 58 (1), 53-57. DOI: 10.1016/j.bjps.2004.04.027.[Crossref]
  • Gerdesmeyer, L., von Eiff, C., Horn, C., Henne, M., Roessner, M., Diehl, P. et al., Antibacterial effects of extracorporeal shock waves. Ultrasound Med Biol, 2005, 31 (1), 115-119. DOI: 10.1016/j.ultrasmedbio.2004.08.022.[Crossref]
  • Loshe-Busch, H., Kraemer, M., Reime, U., The use of extracorporeal shock wave fronts for treatment of muscle dysfunction of various etiologies: an overview of first results. In: Siebert W., Buch M. (eds.), Extracorporeal shock saves in orthopaedics. Springer, Berlin 1997, 215-230.
  • Manganotti, P., Amelio, E., Long-term effect of shock wave therapy on upper limb hypertonia in patients affected by stroke. Stroke, 2005, 36 (9), 1967-1971. DOI: 10.1161/01.STR.0000177880.06663.5c.[Crossref][PubMed]
  • Fukumoto, Y., Ito, A., Uwatoku, T., Matoba, T., Kishi, T., Tanaka, H. et al., Extracorporeal cardiac shockwave therapy ameliorates myocardial ischemia in patients with severe coronary artery disease. Coron Artery Dis, 2006, 17 (1), 63-70.[Crossref]
  • Nishida, T., Shimokawa, H., Oi, K., Tatewaki, H., Uwatoku, T., Abe, K. et al., Extracorporeal cardiac shock wave therapy markedly ameliorates ischemia-induced myocardial dysfunction in pigs in vivo. Circulation, 2004, 110 (19), 3055-3061. DOI: 10.1161/01.CIR.0000148849.51177.97.[Crossref][PubMed]
  • Gann, N., Ultrasound: current concepts. Clin Manage, 1991, 11 (4), 64-69.
  • Ziskin, M., McDiarmid, T., Michlovitz, S. L., Therapeutic ultrasound. In: Michlovitz S. L. (ed.), Thermal agents in rehabilitation. F. A. Davis Co., Philadelphia 1990, 153-156.
  • Speed, C. A., Therapeutic ultrasound in soft tissue lesions - review. Rheumatology, 2001, 40 (12), 1331-1336. DOI: 10.1093/rheumatology/40.12.1331.[Crossref]
  • Saito, M., Fujii, K., Tanaka, T., Soshi, S., Effect of low- and high-intensity pulsed ultrasound on collagen post-translational modifications in MC3T3-E1 osteoblasts. Calcif Tissue Int, 2004, 75 (5), 384-395. DOI: 10.1007/s00223-004-0292-9.[Crossref]
  • Smith, N. B., Temkin, J. M., Shapiro, F., Hynynen, K., Thermal effects of focused ultrasound energy on bone tissue. Ultrasound Med Biol, 2001, 27 (10), 1427-1433.[Crossref]
  • Wolbarst, A. B., Physics of Radiology. Appleton & Lange, Norwark 1993.
  • Young, S. R., Dyson, M., Effect of therapeutic ultrasound on the healing of full-thickness excised skin lesions. Ultrasonics, 1990, 28 (3), 175-180. DOI: 10.1016/0041-624X(90)90082-Y.[PubMed][Crossref]
  • Young, S. R., Dyson, M., The effect of therapeutic ultrasound on angiogenesis. Ultrasound Med Biol, 1990, 16 (3), 261-269.[Crossref][PubMed]
  • Draper, D. O., Castel, J. C., Castel, D., Rate of temperature increase in human muscle during 1 MHz and 3 MHz continuous ultrasound. J Orthop Sports Phys Ther, 1995, 22 (4), 142-150.[Crossref]
  • Gallo, J. A., Draper, D. O., Brody, L. T., Fellingham, G. W., A comparison of human muscle temperature increases during 3-MHz continuous and pulsed ultrasound with equivalent temporal average intensities. J Orthop Sports Phys Ther, 2004, 34 (7), 395-401. DOI: 10.2519/jospt.2004.1363.[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_v10038-009-0025-z
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.