Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2007 | 79 | 11 | 720-727

Article title

Cellular and Molecular Basis of Impaired Healing of Diabetic Foot Ulcers

Content

Title variants

Languages of publication

EN

Abstracts

EN

Keywords

Year

Volume

79

Issue

11

Pages

720-727

Physical description

Dates

published
1 - 11 - 2007
online
11 - 2 - 2008

Contributors

  • Department of Surgical Research and Transplantology, Medical Research Center, Polish Academy of Sciences, Warsaw
  • Department of Surgical Research and Transplantology, Medical Research Center, Polish Academy of Sciences, Warsaw

References

  • Jeffcoate WJ, Harding KH: Diabetc foot ulcers. Lancet 2003; 361: 1545-41.
  • Frykberg RG: An evidence-based approach to diabetic foot infections. Am J Surg 2003; 186/5A: 44S-54S.
  • Thomas DW, Harding KG: Wound healing. Br J Surg 2002; 89: 1203-05.[PubMed][Crossref]
  • Ramasastry SS: Acute wounds. Clin Plast Surg 2005; 32: 195-208.[Crossref][PubMed]
  • Falanga V: Wound healing and its impairment in the diabetic foot. Lancet 2005; 366: 1736-43.
  • Martin P: Wound healing-aiming for the perfect skin regeneration. Science 1997; 276: 75-81.
  • Mehendale FMP, Martin P: The cellular and molecular events of wound healing. In: Falanga V (ed.). Cutaneous wound healing. London: Martin Dunitz; 2001, pp. 15-37.
  • Chettibi S, Ferguson MWJ: Wound repair: an overview. In: Gallin JI, Snyderman R (ed.) Inflammation: basic principles and clinical correlates. Philadelphia: Lipincott Williams & Wilkins; 1999, pp. 865-81.
  • Werner S, Grose R: Regulation of wound healing by growth factors and cytokines. Physiol Rev 2003; 83: 835-70.[PubMed]
  • Kahari V-M, Saarialho-Kere UK: Matrix metalloproteinases in skin. Exp Dermatol 1997; 6: 199-213.[PubMed][Crossref]
  • Armstrong DG, Jude EB: The role of matrix metalloproteinases in wound healing. Am J Pediatr Med Assoc 2002; 92: 12-18.
  • Hinz B: Formation and function of the myofibroblasts during tissue repair. J Invest Dermatol 2007; 127: 526-37.[PubMed][Crossref]
  • Lavker RM, Sun T-T: Epidermal stem cells: properties, markers and location. Proc Natl Acad Sci USA 2000; 97: 13473-75.[Crossref]
  • Kauer P, Li A: Adhesive properties of human basal epidermal cells: an analysis of keratinocyte stem cells, transit amplyfying cells and postmitotic differentiating cells. J Invest Dermatol 2000; 114: 413-20.[Crossref]
  • Kallionen M, Koivukangas V, Jarvinen M, et al.: Expression of cytokeratins in regenerating human epidermis. Br J Dermatol 1995; 133: 830-35.[Crossref]
  • Santoro MM, Gaudino G: Cellular and molecular facets of keratinocyte reepithelialization during wound healing. Exp Cell Res 2005; 304: 274-86.[Crossref]
  • Usui ML, Underwood RA, Mansbridge JN, et al.: Morphological evidence for the role of suprabasal keratinocytes in wound reepithelialization. Wound Rep Reg 2005; 13: 468-79.[Crossref]
  • Marionnet C, Pierrard C, Vioux-Chagnpleau C, et al.: Interactions between fibroblasts and keratinocytes in morphogenesis of dermal epidermal junction in a model of reconstructed skin. J Dermatol 2006; 126: 971-79.
  • Wang T-W, Sun J-S, Huang Y-C, et al.: Skin basement membrane and extracellular matrix proteins characterization and quantification by real time RT-PCR. Biomaterials 2006; 27: 5059-68.[Crossref][PubMed]
  • Zimny S, Schatz H, Pfohl: Determinants and estimation of healing time in diabetic foot ulcers. J Diab Complic 2002; 16: 327-32.[Crossref]
  • Abbott CA, Vileikyte L, Williamson S, et al.: Multicenter study of the incidence of predictive risk factors for diabetic neuropathic foot ulceration. Diab Care 1998; 21: 1071-75.[Crossref]
  • Shun C-T, Chang Y-C, Wu H-P, et al.: Skin denervation in type 2 diabetes: correlations with diabetic duration and functional impairments. Brain 2004; 127: 1593-1605.
  • Pittenger GL, Ray M, Burcus NI, et al.: Intraepidermal nerve fibers are indicators of small-fiber neuropathy in both diabetic and nondiabetic patients. Diabet Care 2004; 27: 1974-79.[Crossref]
  • O'Connor TM, O'Connell J, O'Brien DI, et al.: The role of substance P in inflammatory disease. J Cell Physiol 2004; 201: 167-80.[Crossref]
  • Brack A, Stein C: The role of the peripheral nervous system in immune cells recruitment. Exp Neurol 2003: 184: 44-49.
  • Downing JE, Miyan JA: Neural immunoregulation: emerging roles for nerves in immune homeostasis and disease. Immunol Today 2000; 21: 281-89.[Crossref][PubMed]
  • Galkowska H, Olszewski WL, Wojewodzka U, et al.: Neurogenic factors in the impaired healing of diabetic foot ulcers. J Surg Res 2006; 134: 252-58.[Crossref][PubMed]
  • Candel-Gonzales FJ, Alramadan M, Matesanz M, et al.: Infections in diabetic foot ulcers. Eur J Internal Med 2003; 14: 341-43.[Crossref]
  • Lipsky BA, Berendt AR, Gunner-Deery H, et al.: Diagnosis and treatment of diabetic foot infections. Clin Infect Dis 2004; 39: 885-910.[Crossref]
  • Edwards R, Harding KG: Bacteria and wound healing. Curr Opin Infect Dis 2004; 17: 91-96.[Crossref][PubMed]
  • Jones SG, Edwards R, Thomas DW: Inflammation and wound healing: the role of bacteria in the immuno-regulation of wound healing. Lower Extrem Wounds 2004; 3: 201-08.[Crossref]
  • Loots MAM, Lamme EN, Zeegelaar J, et al.: Differences in cellular infiltrate and extracellular matrix of chronic diabetic and venous ulcers versus acute wounds. J Invest Dermatol 1998; 111: 850-57.[PubMed][Crossref]
  • Nishikawa T, Edelstein D, Brownlee M: The missing link: A single unifying mechanism for diabetic complications. Kidney Internat 2000; 58, (Suppl. 77): S26-30.[Crossref]
  • Tsillibary EC: Microvascular basement membranes in diabetic mellitus. J Pathol 2003; 200: 537-46.[Crossref]
  • Gałkowska H, Olszewski WL, Wojewodzka U: Keratinocyte and dermal vascular endothelial cell capacities remain unimpaired in the margin of chronic venous ulcers. Arch Dermatol Res 2005; 296: 286-95.[PubMed][Crossref]
  • Diegelmann RF: Excessive neutrophils characterize chronic pressure ulcers. Wound Rep Reg 2003; 11: 490-95.[Crossref]
  • Dovi JV, He L-K, DiPietro LA: Accelerated wound closure in neutrophil-depleted mice. J Leukoc Biol 2003; 73: 448-55.[PubMed][Crossref]
  • Galkowska H, Wojewodzka U, Olszewski WL: Low recruitment of immune cells with increased expression of endothelial adhesion molecules in margins of the chronic diabetic foot ulcers. Wound Rep Reg 2005; 13: 248-54.[Crossref]
  • Engelhardt E, Toksoy A, Goebeler M, et al.: Chemokines IL8, GROλ, MCP1, IP10 and Mig are sequentially and differentially expressed during phasespecific infiltration of leukocyte subsets in human wound healing. Am J Pathol 1998; 153: 1849-60.
  • Wetzler C, Kaempfer H, Stallmeyer B, et al.: Large and sustained induction of chemokines during impaired wound healing in the genetically diabetic mouse: prolonged persistence of neutrophils and macrophages during the late phase of repair. J Invest Dermatol 2000; 115: 245-53.[Crossref][PubMed]
  • Barker JN, Jones ML, Mitra R, et al.: Modulation of keratinocyte-derived interleukin-8 which is chemotactic for neutrophils and T lymphocytes. Am J Pathol 1991; 139: 869-76.
  • Gibran NS, Ferguson M, Heimbach DM, et al.: Monocyte chemoattractant protein-1 mRNA expression in the human burn wound. J Surg Res 1997; 70: 1-6.[PubMed][Crossref]
  • Nomura S, Shouzu A, Omoto S, et al.: Significance of chemokines and activated platelets in patients with diabetes. Clin Exp Immunol 2000; 121: 437-43.[PubMed]
  • Gałkowska H, Wojewodzka U, Olszewski WL: Chemokines, cytokines and growth factors in keratinocytes and dermal endothelial cells in the margin of chronic diabetic foot ulcers. Wound Rep Reg 2006; 14: 558-65.[Crossref]
  • Elhadd TA, Kennedy G, McLaren M, et al.: Elevated levels of soluble E-selectin in diabetic patients with severe symptomatic peripheral arteries occlusive disease requiring angioplasty. Int Angiol 2000; 19: 171-75.
  • Michel G, Kemeny L, Peter RU, et al.: Interleukin-8 receptor-mediated chemotaxis of normal human epidermal cells. FEBS Lett 1992; 305: 241-43.
  • Rennekampff HO, Hansbrough JF, Kiessig V, et al.: Bioactive interleukin-8 is expressed in wounds and enhances wound healing. J Surg Res 2000; 93: 41-54.[PubMed][Crossref]
  • Boring L, Gosling J, Cleary M, et al.: Decreased lesion formation in CCR2 -/-mice reveals a role for chemokines in the initiation of atherosclerosis. Nature 1998; 394: 894-97.
  • Low QEH, Drugea IA, Duffner LA, et al.: Wound healing in MIP-1λ -/- and MCP-1 -/- mice. Am J Pathol 2001; 159: 457-63.
  • Quatresooz P, Henry F, Paquet P, et al.: Deciphering the impaired cytokine cascades in chronic leg ulcers (review). Internat J Molecul Med 2003; 11: 411-18.
  • Bennett SP, Griffiths GD, Schor AM, et al.: Growth factors in the treatment of diabetic foot ulcers. Br J Surg 2003; 90: 133-46.[Crossref]
  • Edmonds M, Bates M, Doxford M, et al.: New treatments in ulcer healing and wound infection. Diabetes Metab Res Rev 2000; 16 (Suppl 1): S51-54.[Crossref]
  • Jeffcoate W, Price P, Harding KG: Wound healing and treatments for people with diabetic foot ulcers. Diabetes Metab Res Rev 2004; 20(Suppl 1): S78-89.[Crossref]
  • Mulder GD: Diabetic foot ulcers: old problemnew technologies. Nephrol Dial Transplant 2001; 16: 695-98.[PubMed][Crossref]
  • Shure D, Senior RM, Griffin GL, et al.: PDGF AA homodimmers are potent chemoattractants for fibroblasts and neutrophils, and for monocytes activated by lymphocytes or cytokines. Biochem Biophys Res Commun 1992; 186: 1519-24.
  • Arnold F, West DC: Angiogenesis in wound healing. Pharmacol Ther 1991; 52: 407-22.[PubMed][Crossref]
  • Katz MH, Alvarez AF, Kirsner RS, et al.: Human wound fluid from acute wounds stimulates fibroblast and endothelial cell growth. J Am Acad Dermatol 1991; 25: 1054-58.[Crossref]
  • Falanga V, Shen J: Growth factors, signal transduction and cellular responses. In: Falanga V (ed.) Cutaneous wound healing. London: Martin Dunitz, 2001, pp. 81-93.
  • Angiolillo AL, Kanegane H, Sgadari C, et al.: Interleukin 15 promotes angiogenesis in vivo. Biochem Biophys Res Commun 1997; 233: 231-37.[Crossref]
  • Blakytny R, Jude EB, Gibson JM, et al.: Lack of insulin-like growth factor I (IGF I) in the basal keratinocyte layer of diabetic skin and diabetic foot ulcers. J Pathol 2000; 190: 589-94.
  • Yano S, Komine M, Fujimoto M, et al.: Interleukin 15 induces the signals of epidermal proliferation through ERK and PI 3-kinase in a human epidermal keratinocyte cell line, HaCaT. Biochem Biophys Res Commun 2003; 301: 841-47.
  • Krane JF, Murphy DP, Carter DM, et al.: Synergistic effects of epidermal growth factor (EGF) and insulin-like growth factor I/somatomedin c (IGF-1) on keratinocyte proliferation may be mediated by IGF-1 transmodulation of the EGF receptor. J Invest Dermatol 1991; 96: 419-24.
  • Kratz G, Lake M, Ljungstrom K, et al.: Effect of recombinant IGF binding protein-1 on primary cultures of human keratinocytes and fibroblasts: selective enhancement of IGF-1 but not IGF-2 induced cell proliferation. Exp Cell Res 1992; 202: 381-85.[Crossref]
  • Kane CJM, Hebda PA, Mansbridge JN, et al.: Direct evidence for spatial and temporal regulation of transforming growth factor β1 expression during cutaneous wound healing. J Cell Physiol 1991; 148: 157-73.
  • Gałkowska H, Olszewski WL, Wojewodzka U, et al.: Expression of apoptosis-and cell cycle-related proteins in epidermis of venous leg and diabetic foot ulcers. Surgery 2003; 134: 213-20.[Crossref][PubMed]
  • Lobmann R, Ambrosch A, Schultz G, et al.: Expression of matrix proteinases and their inhibitors in the wounds of diabetic and non-diabetic patients. Diabetologia 2002; 45: 1011-16.[PubMed]
  • Lobmann R, Schultz G, Lehnert H: Proteases and the diabetic foot syndrome: mechanisms and therapeutic implications. Diabet Care 2005; 28: 461-71.[Crossref]
  • Cullen B, Smith R, McCulloch E, et al.: Mechanism of action of Promogran, a protease modulating matrix, for the treatment of diabetic foot ulcers. Wound Rep Reg 2002; 10: 16-25.[Crossref]
  • Veves A, Shechan P, Pham HT: A randomized, controlled trial of Promogran (a collagen/ oxidized regenerated cellulose dressing) vs standard treatment in the management of diabetic foot ulcers. Arch Surg 2002; 137: 822-27.
  • Ghatnekar O, Willis M, Persson U: Costeffectiveness of treating deep diabetic foot ulcers with Promogran in four European countries. J Wound Care 2002; 11: 70-74.
  • Chin GA, Thigpin TG, Perrin KJ, et al.: Treatment of chronic ulcers in diabetic patients with a topic metalloproteinase inhibitor, doxycycline. Wounds 2003; 15: 315-23.
  • Saap LJ, Falanga V: Debridement performence index and its correlation with complete closure of diabetic foot ulcers. Wound Rep Reg 2002; 10: 354-59.[Crossref]
  • Lipsky BA: Empirical therapy for diabetic foot infections: are there clinical clues to guide antibiotic selection? Clin Microbiol Infect 2007; 13: 351-53.[Crossref][PubMed]
  • Fu X, Li X, Chehg B, et al.: Engineered growth factors and cutaneous wound healing: success and possible questions in the past 10 years. Wound Rep Reg 2005; 13: 122-30.[Crossref]
  • Koveker GB: Growth factors in clinical practice. Int J Clin Pract 2000; 54: 590-93.[PubMed]
  • Limova M: New therapeutic options for chronic wounds. Dermatol Clin 2002; 20: 357-63.[Crossref][PubMed]
  • Margolis DJ, Bartus C, Hoffstad O, et al.: Effectiveness of recombinant human platelets-derived growth factor for the treatment of diabetic neuropathic foot ulcers. Wound Rep Reg 2005: 13: 531-36.[Crossref]
  • Generini S, Tuveri MA, Matucci-Cerinic M, et al.: Topical application of nerve growth factor in human diabetic foot ulcers. A study of three cases. Exp Clin Endocrinol Diabetes 2004; 112: 542-44.[Crossref]
  • Cavallini M: Autologous fibroblasts to treat deep and complicated leg ulcers in diabetic patients. Wound Rep Reg 2007; 15: 35-38.[Crossref]
  • Caravaggi C, De Giglio R, Pritelli C, et al.: HYAFF 11-based autologous dermal and epidermal grafts in the treatment of nonifected diabetic plantar and dorsal foot ulcers. Diabetic Care 2003; 26: 2853-59.[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_v10035-007-0112-9
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.