Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2012 | 14 | 4 | 88-94

Article title

Comparative studies on the removal of copper (II) by Ulva fasciata activated carbon and commercially activated carbon

Content

Title variants

Languages of publication

EN

Abstracts

EN
In this work, the efficiency of Ulva fasciata sp. activated carbons (CCUC, SCUC and SSUC) and commercially activated carbon (CAC) were studied for the removal of Cu (II) ions from synthetic wastewater. Batch adsorption experiments were carried out as a function of pH, contact time, initial copper concentration and adsorbent dose. The percentage adsorption of copper by CCUC, SSUC, SCUC and CAC are 88.47%, 97.53%, 95.78% and 77.42% respectively. Adsorption data were fitted with the Langmuir, Freundlich and Temkin models. Two kinetic models pseudo first order and the pseudo second order were selected to interpret the adsorption data.

Publisher

Year

Volume

14

Issue

4

Pages

88-94

Physical description

Dates

published
1 - 12 - 2012
online
12 - 01 - 2013

Contributors

  • Vivekananda College of Arts and Sciences for Women (Autonomous), Department of chemistry, Tiruchengode-637205, India
  • Govt. Arts College, Department of chemistry, Karur-639005, India

References

  • 1. Dahiya, S., Tripathi, R.M. & Hegde, A.G., (2008). Biosorption of heavy metals and radionuclide from aqueous solutions by pre- treated arca shell biomass, J. Hazard Mater. 150, 376-386. DOI:10.1016/j.hazmat 2007.04.134.[Crossref]
  • 2. Sprynskyy, M., Buszewski, B. & Terzyk, A.P., Namie´snik, J., (2006). Study of the selection mechanism of heavy Metal Pb2+ , Cu2+ , Ni2+ and Cd2+) adsorption on clinoptilolite, J. Colloid Interf. Sci. 304, 21-28. DOI:10.1016/j.jcis 2006.07.068.[Crossref]
  • 3. Davis, T.A., Volesky, B. & Vieira, R.H.S.F., (2000). Sargassum seaweed as biosorbent for heavy metals. Water Res. 34, 4270-4278.[Crossref]
  • 4. Primary Drinking Water Rules., (1992). Sec.141.32 (e) (20), Federal Regulations, The Bureau of National Affairs, Inc.,
  • 5. Kuyucak, N. & Volesky, B., (1998). Biosorbent for recovery of metals from industrial solutions. Biotechnol Lett 10:137-142.
  • 6. Pagnanelli, F., Pietrangeli, M., Toro, L., Trifoni, M. & Veglio, F., (2003). Biosorption of metal ions on Arthrobacter sp.: biomass characterization and bisortpion modelling, Environ. Sci. Technol. 34, 2773-2778.
  • 7. Pagnanelli, F., Trifoni, M., Bcolchini, R., Esposito, A., Toro, L. & Veglio, F., (2001). Equilibrium biosorption studies in single and multi-metal systems, Process Biochem. 37 (2), 115-124.[Crossref]
  • 8. Volesky, B., (1987). Biosorbents for metal recovery,Trends Biotechnol. 5, 96-101.[Crossref]
  • 9. Gadd, G.M. & White, C., (1993). Microbial treatment of metal pollution: a Working biotechnology, Trends Biotechnol 11, 353- 360.[Crossref][PubMed]
  • 10. Ramelow, G.J., Fralick, D. & Zhao, Y., (1992). Factors affecting the uptake of aqueous metal ions by dried seaweed biomass, Microbios 72, 81-93.
  • 11. Vilar, V.J.P., Botelho, C.M.S. & Boaventura, R.A.R., (2008). Lead and copper biosorption by marine red algae Gelidium and algal composite material in a CSTR (“Carberry” type), Chem. Eng. J. 138, 249-257.[WoS]
  • 12. Vilar, V.J.P., Botelho, C.M.S., Boaventura, R.A.R., (2008). Metal biosorption by algae Gelidium derived materials from binary solutions in a continuous stirred adsorber, Chem. Eng. J. 141, 42-50.[WoS]
  • 13. Babel, S., Kurmiawan, T.A., (2003). Low-cost adsorbents for heavy metals uptake from contaminated water: a review, J. Hazard. Mater. B 97, 219- 243.[Crossref]
  • 14. El-Sikaily, A., Khaled A., El Nemr, A. & Abdelwahab, O., (2006). Removal of methylene blue from aqueous solution by marine green alga Ulva lactuca, Chem. Ecol. 22 149-157.
  • 15. Abdelwahab, O., El Nemr, A., El-Sikaily, A., Khaled, A., (2006). Biosorption of Direct Yellow 12 from aqueous solution by marine green algae Ulva Lactuca, Chem. Ecol. 22, 253- 266.
  • 16. Abdelwehab, O., El Sikaily, A., El Nemr, A., Khaled, A., (27-29th May 2006). Biosorption of copper from aqueous solution by biomass of marine Ulva lettuce and its activated carbon, in: International Conference on Marine Pollution in the Arab Region, Sheraton El Montaza, Alexandria, Egypt, p.13.
  • 17. Gong, R., Ding, Y.D., Liu, H., Chen, Q. & Liu, Z., (2005). Lead biosorption by intact and pretreated spirulina maxima biomass, Chemosphere 58, 125-130.
  • 18. Karthikeyan, S., Sivakumar, P. & Palanisamy, P.N., (2008). Novel Activated Carbons from Agricultural Wastes and their Characterization, E-Journal of chemistry 5, 409-426.
  • 19. Aydın, H., Bulut, Y., Yerlikaya, C., (2008). Removal of copper (II) from aqueous solution by adsorption onto low-cost adsorbents, Journal of Environmental Management 87, 37-45.[WoS][Crossref]
  • 20. Ajmal, Rao, M., Ahmad, R. A. K., and Ahmad, R., (2000). Adsorption studies on Citrus reticulate (fruit peel of orange): removal and recovery of Ni (II) from electroplating wastewater. Hazardous Materials, 79, 117-131.
  • 21. Langmuir I., (1918). The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc. 40, 1361-1367.[Crossref]
  • 22. Weber, Jr. W.J., (1972). Physicochemical Processes for Water Quality Control, Wiley/Inter-science, New York.
  • 23. Freundlich, H. & Helle ,W.J., (1939). Ruber die adsorption in Lusungen Journal of American Chemical Society, 61, 2-28.
  • 24. Seker A., Shahwan T., Eroglu A.E., Yilmaz S., Demirel Z. & Dalay M.T., (2008). Equilibrium thermodynamic and kinetic studies for the biosorption of aqueous lead(II), cadmium(II) and nickel(II) ions on Spirulina platensis, J. Hazard. Mater. 154, 973-980. DOI:10.1016/j.hazmat 2007.11.007.[Crossref]
  • 25. Lagergren, S. & Kungliga, S., (1898). Svenska Ventenskapsakademiens. Handlingar, Band. 24(4):1.
  • 26. Ho, Y.S. & McKay, G., (1999). The sorption of lead (II) ions on peat. Water Research 33, 578-584.[Crossref]
  • 27. Cetinkaya Donmez, G., Aksu, Z., Ozturk, A., Kutsa, T., (1999). A comparative study on heavy metal biosorption characteristics of some algae, Process Biochem. 34, 885-892.
  • 28. Aksu, Z., Wong, Y.S. & Tam, N.F.Y., (1998). Algae for Waste Water Treatment, Springer-Verlag/Landes Bioscience, Germany, pp. 37-53 (Chapter3).
  • 29. Harris, P.O. & Ramelow, G.J., (1990). Binding of metal ions by particulate biomass derived from Chlorella vulgaris: Part I individual ion species, Environ.Sci. Technol. 24, 220-228.[Crossref]
  • 30. Jianlong, W., (2002). Biosorption of copper(II) by chemically modified biomass of Saccharomyces cerevisiae, Process Biochem. 37, 847-850.[Crossref]
  • 31. Tien, C.J., (2002). Biosorption of metal ions by freshwater algae with different surface characteristics, Process Biochem. 38, 605-613.[Crossref]
  • 32. Horsfall Jr, M., Abia, A.A. & Spiff, A.I., (2003). Sorption of cadmium(II) and zinc(II) ions from aqueous solutions by cassava waste biomass (Manihot sculenta Cranz), Afr. J. Biotechnol. 2 (10), 360-364.
  • 33. Nuhoglu, Y. & Oguz, E., (2003). Removal of copper(II) from aqueous solutions by biosorption on the cone biomass of Thuja orientalis, Process Biochem.38, 1627-1631.[Crossref]
  • [34] Matheickal, J.T., Yu. Q., (1999). Biosorption of lead (II) and copper(II) from aqueous solutions by pre-treated biomass of Australian marine algae. Bioresource Technol. 69, 223-229.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_v10026-012-0108-z
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.