Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2012 | 14 | 4 | 57-60

Article title

Controllable preparation of highly active horseradish peroxidase-gold nanoparticle bionanoconjugate

Content

Title variants

Languages of publication

EN

Abstracts

EN
A novel method of immobilizing horse radish peroxidase enzyme (HRP) onto the surface of gold nanoparticles (GNPs) was developed. As a result, a high-activity bionanoconjugates was obtained through utilizing the biotin-streptavidin (SA) system. The HRP-SA-GNP bionanoconjugate with high activity was conveniently prepared through the biotin- avidin system. Compared with the HRP-GNP bioconjugate prepared through the traditional electrostatic absorption method, the enzyme activity per GNPs of this new bionanoconjugate was enhanced by 10 times. Moreover, the enzyme activity of this bionanoconjugate was controllable. The above method of bionanoconjugation preparation has promising applications in the fields including preparing highly active bio-nanoprobe and immobilized enzyme.

Publisher

Year

Volume

14

Issue

4

Pages

57-60

Physical description

Dates

published
1 - 12 - 2012
online
12 - 01 - 2013

Contributors

author
  • Jiangnan University, School of Food Science and Technology, State Key Lab of Food Science and Technology, Wuxi, Jiangsu, 214122, PR China
author
  • Jiangnan University, School of Food Science and Technology, State Key Lab of Food Science and Technology, Wuxi, Jiangsu, 214122, PR China
author
  • Jiangnan University, School of Food Science and Technology, State Key Lab of Food Science and Technology, Wuxi, Jiangsu, 214122, PR China
author
  • Jiangnan University, School of Food Science and Technology, State Key Lab of Food Science and Technology, Wuxi, Jiangsu, 214122, PR China

References

  • 1. Xiao, Y., Patolsky, F., Katz, E. , Hainfeld, J.F., & Willner, I. (2003). Plugging into enzymes: nanowiring of redox enzymes by a gold nanoparticle, Science, 299, 1877-1881. DOI: 10.1126/science.1080664.[Crossref]
  • 2. Liu, T., Tang, J., & Jiang, L. (2004). The enhancement effect of gold nanoparticles as a surface modifier on DNA sensor sensitivity, Biochemical and BiophysicalResearch Communications, 313, 3-7. DOI: 10.1016/j. bbrc.2003.11.098.[Crossref]
  • 3. Cheng, Y., Pun, C., Tsai, C., & Chen, P. (2005). An array-based CMOS biochip for electrical detection of DNA with multilayer self-assembly gold nanoparticles, Sensor and Actuator B, 109, 249-255. DOI: 10.1016/j. snb.2004.12.072.[Crossref]
  • 4. Pasquato, L., Pengo, P., & Scrimin, P. (2004). Functional gold nanoparticles for recognition and catalysis, Jouranl of materials Chemistry, 14, 3481-3487. DOI: 10.1039/B410476E.[Crossref]
  • 5. Ambrosi, A., Airo, F., & Merkoci, A. (2010). Enhanced Gold Nanoparticle Based ELISA for a Breast Cancer Biomarker. Analytical Chemistry, 82, 1151-1156. DOI: 10.1021/ac902492c.[Crossref][WoS]
  • 6. Jia, C.P., Zhong, X.Q., Hua, B., Liu, M.Y., Jing, F.X., Lou, X.H., Yao, S.H., Xiang, J. Q., Jin, Q.H., & Zhao, J.L. (2009). Nano-ELISA for highly sensitive protein detection. Biosensors and Bioelectronics, 24, 2836-2841. DOI: 10.1016/j.bios.2009.02.024.[Crossref]
  • 7. Zhou, Y., Tian, X.L., Li, Y.S., Pan, F.G., Zhang, Y.Y., Zhang, Yang, L., Wang, X.R., Ren, H.L., Lu, S.Y., Li, Z.H., Chen, Q.J., Liu, Z.S., & Liu, J.Q. (2011). An enhanced ELISA based on modified colloidal gold nanoparticles for the detection of Pb(II). Biosensorsand Bioelectronics, 26, 3700-3704. DOI: 10.1016/j. bios.2011.02.008.[Crossref]
  • 8. Zhou, F., Wang, M.M., Yuan, L., Cheng, Z.P., Wu, Z.Q., & Chen, H. (2012). Sensitive sandwich ELISA based on a gold nanoparticle layer for cancer detection. Analyst, 137, 1779-1784. DOI: 10.1039/C2AN16257A.[Crossref]
  • 9. He, Y.Q., Zhang, S.Q., Zhang, X.B., Zhang, X.J., Balod, M., Gurung, A., Xu, H., Zhang, X.J., & Liu, G.D. (2011). Ultrasensitive nucleic acid biosensor based on enzyme-gold nanoparticle dual label and lateral flow strip biosensor. Biosensors and Bioelectronics, 26, 2018-2024. DOI: 10.1016/j.bios.2010.08.079.[Crossref]
  • 10. Pandey, P., Singh, S.P., Arya, S.K., Gupta,V., Datta, M., Singh, S., & Malhotra, B.D. (2007). Application of Thiolated Gold Nanoparticles for the Enhancement of Glucose Oxidase Activity. Langmuir, 23, (6) 3333-3337. DOI: 10.1021/la062901c.[WoS][Crossref]
  • 11. Li, D., He, Q., Cui, Y., Duan, L., & Li. J.B. (2007). Immobilization of glucose oxidase onto gold nanoparticles with enhanced thermostability. Biochemical andBiophysical Research Communications, 355, 488-493. DOI: 10.1016/j.bbrc.2007.01.183.[Crossref][WoS]
  • 12. Chirra, H.D., Sexton, T., Biswal, D. Hersh, L.B., & Hilt, J.Z. (2011). Catalase-coupled gold nanoparticles: Comparison between the carbodiimide and biotinstreptavidin methods. Acta Biomaterialia, 7, 2865-2872. DOI: 10.1016/j.actbio.2011.01.003.[WoS][Crossref]
  • 13. Haiss, W. ,Thanh, N.T.K., Aveyard, J., & Fernig, D.G. (2007). Determination of Size and Concentration of Gold Nanoparticles from UV-Vis Spectra. AnalyticalChemistry, 79, 4215-4221. DOI: 10.1021/ac0702084.[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_v10026-012-0103-4
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.