Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2012 | 14 | 3 | 29-37

Article title

Zinc ion adsorption on carbon nanotubes in an aqueous solution

Content

Title variants

Languages of publication

EN

Abstracts

EN
The literature devoted to numerical investigation of adsorption of heavy metal ions on carbon nanotubes is scarce. In this paper molecular dynamics is used to simulate the adsorption process and to investigate the effect of the infl uencing parameters on the rate of adsorption. The predictions of the molecular dynamics simulation show that the adsorption process is improved with increasing the temperature, pH of solution, the mass of nanotubes, and surface modifi cation of CNT using hydroxyl and carboxyl functional groups. The results predicted by the model are compared with the experimental results available in the literature; the close agreement validates the accuracy of the predictions. This study reveals that the water layers around the carbon nanotubes and the interaction energies play important roles in the adsorption process. The study also shows that electrostatic force controls the attraction of zinc ions on the nanotube sidewall.

Publisher

Year

Volume

14

Issue

3

Pages

29-37

Physical description

Dates

published
1 - 10 - 2012
received
accepted
online
31 - 10 - 2012

Contributors

author
  • Department of Mechanical Engineering
  • Department of Mechanical Engineering
  • 2Department of Chemical Engineering, Shahid Bahonar University of Kerman, Iran

References

  • 1. Rao, G., Lu, Ch. & Su, F. (2007). Sorption of divalent metal ions from aqueous solution by carbon nanotubes: A review. Separation and Purifi cation Technology 58, 224-231. DOI: 10.1016/j.seppur.2006.12.006.[Crossref]
  • 2. Wang, H.J., Zhou, A.L., Peng, F., Yu, H. & Chen, L.F. (2007). Adsorption characteristic of acidified carbon nanotubes for heavy metal Pb(II) in aqueous solution. Materials Science andEngineering A 466, 201-206. DOI: 10.1016/j.msea.2007.02.097.[WoS][Crossref]
  • 3. Li, Y.H., Wang, S., Wei, J., Zhang, X., Xu, C., Luan, Z., Wu, D. & Wei, B. (2002). Lead adsorption on carbon nanotubes. Chem. Phys. Lett. 357, 263-266. DOI: 10.1016/ S0009-2614(02)00502-X.[Crossref]
  • 4. Lu, C. & Chiu, H. (2006). Adsorption of zinc (II) from water with purifi ed carbon nanotubes. Chemical EngineeringScience 61, 1138-1145. DOI: 10.1016/j.ces.2005.08.007.[Crossref]
  • 5. Stafi ej, A. & Pyrzynska, K. (2007). Adsorption of heavy metal ions with carbon nanotubes. Separation and Purifi cationTechnology 58, 49-52. DOI: 10.1016/j.seppur.2007.07.008.[Crossref]
  • 6. Li, H.Y., Wang, S., Luan, A., Ding, J., Xu, C. & Wu, D. (2003). Adsorption of cadmium(II) from aqueous solution by surface oxidized carbon nanotubes. Carbon 41, 1057-1062. DOI: 10.1016/S0008-6223(02)00440-2.[Crossref]
  • 7. Chingombe, P., Saha, B. & Wakeman, R.J. (2005). Surface modifi cation and characterization of a coal-based activated carbon. Carbon 43, 3132-3143. DOI: 10.1016/j.carbon.2005.06.021.[Crossref]
  • 8. Biniak, S., Pakula, M., Szymanski, G.S. & Swiatkowski, A. (1999). Effect of activated carbon surface oxygen- and/ or nitrogen containing groups on adsorption of copper(II) ions from aqueous solution. Langmuir 15, 6117-6122. DOI: 10.1021/la9815704.[Crossref]
  • 9. XU, Y., Rosa, A., LIU, X. & SU, D. (2011). Characterization and use of functionalized carbon nanotubes for the adsorption of heavy metal anions. New Carbon Materials 26 (1), 57-62. DOI: 10.1016/S1872-5805(11)60066-8.[WoS][Crossref]
  • 10. Bahgat, M., Farghali, A.A., El Rouby, W.M.A. & Khedr, M.H. (2011). Synthesis and modifi cation of multi-walled carbon nano-tubes (MWCNTs) for water treatment applications. Journal of Analytical and Applied Pyrolysis 92 (2), 307-313. DOI: 10.1016/j.jaap.2011.07.002.[WoS][Crossref]
  • 11. Lu, C., Chiu, H. & Liu, C. (2006). Removal of zinc(II) from aqueous solution by purifi ed carbon nanotubes: kinetics and equilibrium studies. Ind. Eng. Chem. Res. 45, 2850-2855. DOI: 10.1021/ie051206h.[Crossref]
  • 12. Li, Y.H., Di, Z., Ding, J., Wu, D., Luan, Z. & Zhu, Y. (2005). Adsorption thermodynamic, kinetic and desorption studies of Pb2+ on carbon nanotubes. Wat. Res. 39, 605-609. DOI:10.1016/j.watres.2004.11.004.[Crossref]
  • 13. Vukovic, G.D., Marinkovic, A.D., Colic, M., Risti, M. D., Aleksi, R., Peric-Grujic, A.A. & Uskokovic, P.S. (2010). Removal of cadmium from aqueous solutions by oxidized and Ethylenediamine-functionalized multi-walled carbon nanotubes. Chemical Engineering Journal 157, 238-248. DOI: 10.1016/j. cej.2009.11.026.[WoS][Crossref]
  • 14. AbdelSalam, M., Makki, M.I., Abdelaal, M.Y.A. & Salametal, M.A. (2010). Preparation and characterization of multi-walled carbon nanotubes/chitosan nanocomposite and its application for the removal of heavy metals from aqueous solution. Journal of Alloys and Compounds 529 (5), 2582-2587. DOI: 10.1016/j.jallcom.2010.11.094.[Crossref]
  • 15. Tarley, C.R., Santos, V.S., Baeta, B.E.L., Pereira, A.C. & Kubota, L.T. (2009). Simultaneous determination of zinc, cadmium and lead in environmental water samples by potentiometric stripping analysis (PSA) using multiwalled carbon nanotube electrode. Journal of Hazardous Materials 169, 256-262. DOI: 10.1016/j.jhazmat.2009.03.077.[WoS][Crossref]
  • 16. Shamspur, T. & Mostafavi, A. (2009). Application of modifi ed multiwalled carbon nanotubes as a sorbent for simultaneous separation and preconcentration trace amounts of Au(III) and Mn(II). Journal of Hazardous Materials 168, 1548-1553. DOI:10.1016/j.jhazmat.2009.03.028.[WoS][Crossref]
  • 17. Pillay, K., Cukrowska E. M. & Coville N. J. (2009). Multi-walled carbon nanotubes as adsorbents for the removal of parts per billion levels of hexavalent chromium from aqueous solution. Journal of Hazardous Materials 166, 1067-1075. DOI:10.1016/j.jhazmat.2008.12.011.[WoS][Crossref]
  • 18. Pyrzynska, K. & Bystrzejewski, M. (2010). Comparative study of heavy metal ions sorption onto activated carbon, carbon nanotubes, and carbon-encapsulated magnetic nanoparticles. Colloids and Surfaces A: Physicochem. Eng. Aspects 362 102-109. DOI:10.1016/j.colsurfa.2010.03.047.[WoS][Crossref]
  • 19. Sheng, G., Li, J., Shao, D., Hu, J., Chen, Ch., Chen, Y. & Wang, X. (2010). Adsorption of copper(II) on multiwalled carbon nanotubes in the absence and presence of humic or fulvic acids. Journal of Hazardous Materials 178, 333-340. DOI:10.1016/j.jhazmat.2010.01.084.[Crossref]
  • 20. El-Sheikh, A.H., Al-Degs, Y., Al-Asad, R.M. & Sweileh, J.A. (2010). Effect of oxidation and geometrical dimensions of carbon nanotubes on Hg(II) sorption and preconcentration from real waters. Desalination 270 (3), 214-220. DOI: 10.1016/j. desal.2010.11.048.[WoS][Crossref]
  • 21. DAngelo, P., Migliorati, V., Mancini, G. & Chillemi, G. (2008). A coupled molecular dynamics and XANES data analysis investigation of aqueous cadmium (II). J. Phys. Chem. A 112, 11833-11841. DOI:10.1021/jp806098r.[Crossref]
  • 22. Allen, M.P. & Tildesley, D.J. (1987). Computer simulation of liquids. Clarendon Press, Oxford, hardback.
  • 23. Ansari dezfoli, A.R., Adabavazeh, Z. & Mehrabian, S. (2011). A molecular dynamic simulation investigation into the behavior of water molecules inside carbon nanotubes. NanomechanicsScience and Technology: An International Journal 1, 247-255. DOI: 10.1615/NanomechanicsSciTechnolIntJ.v1.i3.[Crossref]
  • 24. Banerjee, S., Murad, S. & Puri, I.K. (2007). Preferential ion and water intake using charged carbon nanotubes. ChemicalPhysics Letters 434, 292-296. DOI:10.1016/j.cplett.2006.12.025.[Crossref]
  • 25. Berendsen, H.J.C., Postma, J.P.M., Van Gunsteren, W.F., DiNola, A. & Haak, J.R. (1984). Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684-3690. DOI:10.1063/1.448118.[Crossref]
  • 26. Attard, Ph., Antelmi, D. & Larson, I. (2000). Comparison of the zeta potential with the diffuse layer potential from charge titration, Langmuir 16, 1542-1552. DOI:10.1021/la990487t. [Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_v10026-012-0081-6
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.