Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2012 | 14 | 2 | 75-79

Article title

Synthesis of the cross-linked humic acid supporting palladium catalyst and its catalytic properties for Heck reaction

Content

Title variants

Languages of publication

EN

Abstracts

EN
Cross-linked humic acid supporting palladium (CL-HA-Pd) catalyst was prepared readily and characterized by infrared analysis (IR) and thermogravimetric analysis (TG). The catalyst could catalyze the Heck reaction of aryl halide or substituted aryl halide with vinyl compounds in N2 atmosphere; the yields were above 95%. The catalyst could be recovered and reused 7 times with the Heck reaction of iodobenzene with acrylic acid, and the yield was above 75.6%. The results showed that the catalyst had high catalytic activity even at low temperature of 62°C or with a small amount of the catalyst.

Publisher

Year

Volume

14

Issue

2

Pages

75-79

Physical description

Dates

published
1 - 1 - 2012
online
2 - 7 - 2012

Contributors

author
author
  • Department of Chemistry & Chemical Engineering, Huanghuai University, Zhumadian 463000, Henan China
author
  • Key Lab for Special Functional Materials, Ministry of Education, Henan University, Kaifeng 475000 Henan China

References

  • Zeng, X.Ch. & Cheng, Sh.X. (2002). The main category of humic acid. Humic acid, (2): 4-6. DOI: cnki-:ISSN:1671-9212.0.2002-02-001.
  • Jansen, G., Paciolla, M. & Ghabbour, E. et al (1996). The role of metal complexation in the solubility and stability of humic acid. Mater. Sci. Eng. C, 4(3): 181-187. DOI: 10.1016/S0928-4931(96)00150-6.[Crossref]
  • Provenzano, M. R., D'Orazio, V. & Jerzykiewicz, M., et al (2004). Fluorescence behaviour of Zn and Ni complexes of humic acids from different sources. Chemosphere, 55(6): 885-892. DOI: 10.1016/j.chemosphere.2003.11.040.[Crossref]
  • Gonzalez-Perez, J. A., Gonzalez-Vila, F. J., Almendros, G. (2004). The effect of fire on soil organic matter-a review. Environ. Int, 30(6): 855-870. DOI: 10.1016/j.envint.2004.02.003.[Crossref]
  • Golonka, I., Czechowski, F. & Jezierski, A. (2005). EPR characteristics of heat treated complexes of metals with demineralised humic brown coal in air and ammonia atmosphere. Geoderma, 127(3-4): 237-252. DOI: 10.1016/j.geoderma.2004.12.005.[Crossref]
  • Ghouas, H., Haddou, B. & Kameche, M., et al. (2012). Extraction of humic acid by coacervate: Investigation of direct and back processes. J. Hazard. Mater., 205-206: 171-178. DOI: 10.1016/j.jhazmat.2011.12.057.[Crossref][WoS]
  • Tiao, Ch.H., Tu, M.Ch. & Su, Sh.H. (2001). Role of cupric ions in the H2O2/UV oxidation of humic acid. Chemosphere, 44(5): 913-919. DOI: 10.1016/S0045-6535(00)00580-4.[Crossref]
  • Mirza, M. A., Ahmad, N. & Agarwal, S. P., et al. (2011). Comparative evaluation of humic substances in oral drug delivery. Results in Phar. Sci, 1(1): 16-26. DOI: 10.1016/j.rinphs.2011.06.001.[Crossref]
  • Zhang, Q.L, Zhang, G.C & Ge, J. J. (2004). The application of humic acid in oil field. Drilling fluid & Completion Fluid, 21(3):53-55. DOI: cnki: ISSN:1001-5620.0.2004-03-015.
  • Klavins, M., Dipane, J. & Babre, K. (2001). Humic substances as catalysts in condensation reactions. Chemosphere, 44(4): 737-742. DOI: 10.1016/S0045-6535(00)00294-0.[Crossref][PubMed]
  • Klavins, M. & Babre, K. (2002). Decarboxylation and alkaline colour fading reactions in presence of humic -substances. Chemosphere, 49(6): 685-689. DOI: 10.1016/S0045-6535(02)00303-X.[PubMed][Crossref]
  • Bellamy, L. J. The infrared spectra of complex molecules[M]. Chapman and Hall, London, 1975.
  • MacCarthy, P., Rice, J. A., Spectroscopic methods (other than NMR) for determining functionality in humic substances[M]. Wiley-Interscienece, New York, 1985.
  • Stevenson, F. J., Humus chemistry: genesis, composition, reactions[M]. Wiley-Interscience, New York, 1994.
  • Fan, K. N., An introduction to spectroscopy[M]. Edition 1, Higher Education Press, Beijing, 2001.
  • Hardy, J. J.E, Hubert, S. & Macquarrie, D., et al. (2004). Chitosan based heterogeneous catalysts for Suzuki and Heck reactions. Green Chem. 2004, 6(1): 53-56. DOI: 10.1039/B312145N.[Crossref]
  • Cui, Y. C. & Zhang, L. (2005). Polyvinyl chloride-polyethylene-polyamine supported palladium complexes as high efficient and recyclable catalysts for Heck reaction. J. Mol. Catal. A: Chem, 237(1-2): 120-125. DOI: 10.1016/j.molcata.2005.04.050.[Crossref]
  • Kondolff, I., Doucet, H. & Santelli, M. (2003). Tetraphosphine/palladium-catalyzed Heckreactions of aryl halides with disubstituted alkenes. Tetrahedron Lett., 44(46): 8487-8491. DOI: 10.1016/j.tetlet.2003.09.092.[Crossref]
  • Evangelisti, C., Panziera, N., Pertici, P., et al. (2009). Palladium nanoparticles supported on polyvinylpyridine: Catalytic activity in Heck-type reactions and XPS structural studies. Journal of Catalysis, 262(2): 287-293. DOI: 10.1016/j.jcat.2009.01.005.[Crossref][WoS]
  • Xu, Q.J, Zhang, L. & Shi, W. Zh., et al. (2009). Catalytic performances of cross-linking humic acids supported Pd/Ni bimetallic catalyst for heck reaction. Pol. J. Chem. Technol., 11(3): 22-26. 10.2478/vl0026-009-0031-0.[WoS]
  • Raja, M. U., Ramesh, R. & Liu, Y. (2011). New binuclear Pd(II) thioamide complexes for the Heck reaction of aryl bromides. Tetrahedron Lett., 52(42): 5427-5430. DOI: 10.1016/j.tetlet.2011.07.080.[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_v10026-012-0074-5
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.