Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2012 | 14 | 2 | 49-53

Article title

Extraction of vanadium and potassium compounds from the spent vanadium catalyst from the metallurgical plant

Content

Title variants

Languages of publication

EN

Abstracts

EN
A spent vanadium catalyst, from the plant of metallurgical type, was leached in a sulfuric acid solution to recover vanadium and potassium compounds. The effect of time, temperature, concentration of acid, catalyst particle size and phase ratio was studied. Additionally the concentration of iron, copper, zinc, arsenic and lead compounds was determined. The flow sheet for the proposed process of spent vanadium catalyst leaching is presented.

Publisher

Year

Volume

14

Issue

2

Pages

49-53

Physical description

Dates

published
1 - 1 - 2012
online
2 - 7 - 2012

Contributors

  • Faculty of Chemistry, Department of Chemical Technology, Nicolaus Copernicus University, ul. Gagarina 7, 87-100 Toruń, Poland

References

  • Grzesiak, P. (2006). Utilization of industrial waste from sulfuric acid production processes. Przem. Chem. 8-9, 1015-1019 (in Polish).
  • Grzesiak, P. (2005). Vanadium catalysts for the oxidation of SO2. Poznań, Poland: WN IOR (in Polish).
  • Mazurek, K., Białowicz, K. & Trypuć, M. (2010). Extraction of vanadium compounds from the used vanadium catalyst with the potassium hydroxide solution. Polish J. Chem. Technol. 1(12), 23-28, DOI: 10.2478/v10026-010-0005-2.[WoS][Crossref]
  • Grobela, M. & Grzesiak, P. (2007). The influence of iron compounds in the sulfuric acid catalyst on the SO2 oxidation process. Polish J. Chem. Technol. 1(9), 2-6, DOI: 10.2478/v10026-007-0002-2.[Crossref]
  • Grzesiak, P., Grobela, M. & Motała, M. (2007). The influence of the catalyst worktime on SO2 emission quantity from the sulfuric acid system and the catalyst waste material. Polish J. Chem. Technol. 3(9), 134-137, DOI: 10.2478/v10026-007-0073-0.[Crossref]
  • Trypuć, M., Mazurek, K., Kiełkowska, U. & Druzyński, S. (2007). Utilization of used contact masses from the oxidation state of sulfur(IV) oxide to sulfur(VI) oxide. Pol. J. Chem. Technol. 9(3), 26-28, DOI: 10.2478/v10026-007-0047-2.[Crossref]
  • Mazurek, K., Trypuć, M., Białowicz, K. & Drużyński, S. (2008). The influence of leaching solution pH and addition of peroxide hydrogen on the recovery of some components from the used vanadium catalyst with urea solutions. Pol. J. Chem. Technol. 10(4), 34-36, DOI: 10.2478/v10026-008-0044-0.[WoS][Crossref]
  • Mazurek, K., Białowicz, K. & Trypuć, M. (2010). Recovery of vanadium, potassium and iron from a spent catalyst using urea solution. Hydrometallurgy 103, 19-24, DOI: 10.1016/j.hydromet.2010.02.008.[Crossref][WoS]
  • Khorfan, S., Wahoud, A. & Reda, Y. (2001). Recovery of vanadium pentaoxide from spent catalyst used in the manufacture of sulphuric acid. Periodica Polythechnica Ser. Chem. Eng. 45(2), 131-137.
  • Mohanty, J., Rath, P. C., Bhattacharya, I. N. & Paramguru, R. K. (2011). The recovery of vanadium from spent catalyst: a case study. Mineral Processing and Extractive Metallurgy 120, 56-60, DOI: 10.1179/037195510X12772935654909.[Crossref]
  • Zeng, L. & Cheng, C. Y. (2009). A literature review of the recovery of molybdenum and vanadium from spent hydrodesulphurization catalysts. Part I: metallurgical processes. Hydrometallurgy 98, 1-9, DOI: 10.1016/j.hydromet.2009.03.010.[WoS][Crossref]
  • Zeng, L. & Cheng, C. Y. (2009). A literature review of the recovery of molybdenum and vanadium from spent hydrodesulphurization catalysts. Part II: separation and purification. Hydrometallurgy 98, 10-20, DOI:10.1016/j.hydromet.2009.03.012.[Crossref][WoS]
  • Magnani, J. L., Kachan, G. C. & Ferreira, N. L. (2000). Vanadium recovery by leaching in spent catalyst for sulfuric acid production. Rev. Ciencia Technol. 8, 85-90.
  • Tozano, L. J. & Juan, D. (2001). Teaching of vanadium from spent sulphuric acid catalysts. Miner. Eng. 5, 543-546, DOI:10.1016/S0892-6875(01)00042-5.[Crossref]
  • Brouwer, P. (2006). Theory of XRF. Almelo, Netherlands: Panalytical.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_v10026-012-0070-9
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.