Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2011 | 13 | 3 | 56-60

Article title

Separation of volatile compounds from fermentation broth by membrane distillation

Content

Title variants

Languages of publication

EN

Abstracts

EN
The diluted ethanol solutions and fermentation broth (Saccharomyces cerevisiae) were separated by membrane distillation (MD). Hydrophobic macroporous (pore size 0.2 μm) capillary polypropylene membranes, Accurel PP V8/2 HF and Accurel PP S6/2, were used for these studies. The MD process can be successfully applied to remove the volatile components from the fermentation broth. Besides ethanol, propionic and acetic acids were moved from the broth to the distillate. Therefore, the course of the fermentation carried out in a membrane distillation bioreactor considerably accelerate its rate and increase the efficiency by a selective removal of fermentation products. It was found that the broth subjected to the separation did not affect the hydrophobic properties of the polypropylene membrane assembled in the MD modules.

Publisher

Year

Volume

13

Issue

3

Pages

56-60

Physical description

Dates

published
1 - 1 - 2011
online
5 - 10 - 2011

Contributors

author
  • Institute of Chemical Technology and Environment Engineering, West Pomeranian University of Technology, ul. Pułaskiego 10, 70-322 Szczecin, Poland
  • Institute of Chemical Technology and Environment Engineering, West Pomeranian University of Technology, ul. Pułaskiego 10, 70-322 Szczecin, Poland

References

  • Ponton, J.W. (2009). Biofuels: Thermodynamic sense and nonsense, J. Cleaner Prod., 17, 896-899. DOI:10.1016/j.jclepro.2009.02.003.[WoS][Crossref]
  • Demirbas, A. (2007). Progress and recent trends in biofuels, Prog. Energy Combust. Sci., 33, 1-18. DOI:10.1016/j.pecs.2006.06.001.[WoS][Crossref]
  • Grajek, W., Gumienna, M., Lasik, M. & Czarnecki, Z. (2008). Perspectives for ethanol production from starchy matherials, Przem. Chem., 87 (11), 1094-1101 (in Polish).
  • Sassner, P., Galbe, M. & Zacchi, G. (2008). Techno-economic evaluation of bioethanol production from three different lignocellulosic materials, Biomass Bioenergy, 32, 422-430. DOI:10.1016/j.biombioe.2007.10.014.[WoS][Crossref]
  • Bai, F.W., Anderson, W.A. & Moo-Young, M. (2008). Ethanol fermentation technologies from sugar and starch feedstocks, Biotechnol. Adv., 26, 89-105. DOI:10.1016/j.biotechadv.2007.09.002.[WoS][Crossref]
  • Morin-Couallier, E., Payot, L.T., Pastore Bertin, A. & Lameloise, M.L. (2006). Recycling of distillery effluents in alcoholic fermentation, Appl. Biochem. Biotechnol., 133, 217-238. DOI: 10.1385/ABAB:133:3:217.[Crossref]
  • Morin-Couallier, E., Salgado-Ruiz, B., Lameloise, M.L. & Decloux, M. (2006). Usefulness of reverse osmosis in the treatment of condensates arising from the concentration of distillery vinasses, Desalination, 196, 306-317. DOI:10.1016/j.desal.2006.02.002.[Crossref]
  • Takaya, M., Matsumoto, N. & Yanase, H. (2002). Characterization of membrane bioreactor for dry wine production, J. Biosci. Bioeng., 93 (2), 240-244. DOI:10.1016/S13891723(02)80021-4.[Crossref]
  • Park, B.G., Lee, W.G., Chang, Y.K. & Chang, H.N. (1999). Long-term operation of continuous high cell density culture of Saccharomyces cerevisiae with membrane filtration and on-line cell concentration monitoring, Bioprocess Eng., 21, 97-100. DOI: 10.1007/PL00009070.[Crossref]
  • Maiorella, B.L., Blanch, H. W. & Wilke, C.R. (1984). Economic evaluation of alternative ethanol fermentation processes, Biotechnol. Bioeng., 26, 1003-1025. DOI: 10.1002/bit.260260902[Crossref]
  • Gyamerah, M. & Glover, J. (1996). Production of ethanol by continuous fermentation and liquid - liquid extraction, J. Chem. Tech. Biotechnol., 66, 145-152. DOI: 10.1002/(SICI)1097-4660(199606).[Crossref]
  • Nakao, S., Saitoh, F., Asakura, T., Toda, K. & Kimura, S. (1987). Continuous ethanol extraction by pervaporation from a membrane bioreactor. J. Membr. Sci., 30, 273-287. DOI:10.1016/S0376-7388(00)80123-4.[Crossref]
  • Miyazawa, K.I. & Kokugan, T. (1998). Effect of production removal by pervaporation on ethanol fermentation, J. Ferment. Bioeng., 86(5). 488-493. DOI:10.1016/S0922-338X(98)80157-8.[Crossref]
  • Gryta, M. (2001). The fermentation process integrated with membrane distillation, Separ. Purif. Technol., 24, 283-296. DOI:10.1016/S1383-5866(01)00132-0.[Crossref]
  • Gryta, M., Morawski, A.W. & Tomaszewska, M. (2000). Ethanol production in membrane distillation bioreactor, Catal. Today, 56, 159-165. DOI:10.1016/S0920-5861(99)00272-2.[Crossref]
  • Gryta, M. & Barancewicz, M. (2010). Influence of morphology of PVDF capillary membranes on the performance of direct contact membrane distillation, J. Membr. Sci., 358, 158-167. DOI:10.1016/j.memsci.2010.04.044.[Crossref]
  • Taylor, R. & Krishna, R. (1993). Multicomponent mass transfer, New York, USA, John Willey.
  • Barancewicz, M., Sasim, M. & Gryta, M. (2009). Zastosowanie chromatografii jonowej do badania przebiegu fermentacji, Prace i Studia, 77, 89-101.
  • El-Bourawi, M.S., Ding, Z., Ma, R., & Khayet, M. (2006). A framework for better understanding membrane distillation separation process, J. Membr. Sci., 285, 4-29. DOI: 10.1016/j.memsci.2006.08.002.[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_v10026-011-0038-1
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.