Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2011 | 13 | 2 | 6-10

Article title

Kinetics and mechanism of electron transfer to pyridinium chlorochromate (VI) from sulfur containing amino acid, L-cysteine in aqueous and micellar media

Content

Title variants

Languages of publication

EN

Abstracts

EN
The electron transfer reaction of L-cysteine (RSH) with pyridinium chlorochromate (PCC) has been studied spectrophotometrically over the range 2.0 ≤ 103 [RSH] ≤ 6.0; 0.01 ≤ [H+] ≤ 0.2; 298 ≤ T ≤ 318 K and I = 0.3 mol dm-3 (NaClO4). The electron transfer reaction has also been carried out in the presence of anionic, cationic and neutral micelle. The reaction in acid medium is strongly catalyzed by changing [SDS]T (sodium dodecyl sulfate) up to 3 × 10-2 mol dm-3, beyond this concentration of SDS, the rate is retarded. The cationic and neutral micelle has a small effect on the rate. ΔH≠ (kJ mol-1) and ΔS≠ (JK-1 mol-1) values for the k1 and k2 paths are 30.20 ± 0.25, -159.65 ± 0.83 and 29.60 ± 0.62, -127.09 ± 2.17, respectively. The negative activation entropy is indicative of the ordered transition state for the electron transfer reaction. Formation of 2-amino-3-(2-amino-2-carboxy-ethyl) disulfanyl-propanoic acid as product is strongly supported by IR spectra.

Publisher

Year

Volume

13

Issue

2

Pages

6-10

Physical description

Dates

published
1 - 1 - 2011
online
16 - 6 - 2011

Contributors

  • PG Department of Chemistry, Utkal University, Vani Vihar, Bhubaneswar-751004, Orissa, India
  • PG Department of Chemistry, Ravenshaw Uiversity, Cuttack-753003, Orissa, India
author
  • PG Department of Chemistry, Utkal University, Vani Vihar, Bhubaneswar-751004, Orissa, India
author
  • PG Department of Chemistry, Khallikote College, Berhampur-76001, Orissa, India

References

  • Bilehal, D.C., Kulkarni, R. & Nandibewoor, S.T. (2005). Comparative study of the chromium (III) catalysed oxidation of L-leucine and L-Isoleucine by alkaline Permanganate; A kinetic and mechanistic approach. J. Molecular Catalyst. 232, 21. DOI: 10.1016/j.molcata.2005.01.020.[Crossref]
  • Mahesh, R.T., Pandurang, D. Pol & Sharanappa, T. Nandibewoor (2003) Kinetics and mechanism of oxidation of L-Leuncine by alkaline Diperiodatonickelate (IV) - A free radical intervention, deamonation, and decarboxylation. Chemistry and Materials science, 134, 1341-1352, DOI: 10.1007/s00706-003-0608-x.[Crossref]
  • Abedinzadeh, Z. (2001). Sulfur-centered reactive intermediates derived from the oxidation of sulfur compounds of biological interest. Can. J. Physiol, Pharmacol, 79, 166-170. DOI: 10.1139/cjpp-79-2-166.[Crossref]
  • Sconichc, Z.F., Wilson, G.S. & Borchard, R. (1993). Iron-thiolate induced oxidation of methionine to methionine sulfoxide in smallk model peptides. Intramolecular catalysis by histdine. J. Bio-chim Bio-phy Acta (BBA), 1158, 307. DOI: 10.1016/0304-4165(93)90030-C.[Crossref]
  • Gouda, B.T. & Vijay Lakshmi, R. (1987). Kinetics of oxdative decarboxylation of aminoacids by bromoamine-T in alkaline medium. J. Ind. Chem. Soc., 64, 40-407.
  • Annapurn, N., Kalyan Kumar, A, Vani, P. & Rao, G. Nageswar. (2008). Kinetics of oxidation of L-cystine by pyrdinium bromochromate J. Ind. Chem. Soc., 85, 542-545.
  • Read, J.F., Bewick, S.A., Graves, C.R., Macpherson, J.M., Salah, J.C., Theriault, A. & Wyand, A.E.H. (2000). The kinetics and mechanism of the oxidation of S-methyl-L-cystine, Lcysteine and L-cysteine by potassium ferrate. Inorg. Chem. Acta., 303, 244. DOI: 10.1016/s0020-1693(00)00043-8.[Crossref]
  • Swain Trilochan and Mohanty P. (2009). Kinetics and mechanistic study on the reaction of iodo (diethylenetriamine) platinum (II) with L-cystine Aust, J. Chem., 62, 493-500. DOI: 10.1071/CH08192.[WoS][Crossref]
  • Corey, E.J. & Sugges, W.J., (1975). Pyridinium chlorochromate. An efficient reagent for oxidation of primary and secondary alcohols to carbonyl compounds. Tetrahedron Lett. 2647. DOI: 10.1016/s0040-4039(00)75204-x.[Crossref]
  • Panigrahi, G.P. & Mahapatra, D.D. (1980). Kinetics of oxidation of cyclopentanol, cyclohexanol, cycloheptanol and cyclooctanol by pyridinum chlorochromate (corey's Reagent) in chlorobenzene-nitro-benzene mixture. Ind. J. chem. SecB, 19, 579-582.
  • Vogel, A.I. (1989). Text Book of Quantitative Chemical Analysis (5th ed.), ELBS, Longman group UK.
  • Nakamato, K. (1997). Infrared and Raman spectra of Inorganic and coordination complex (5th ed.) John Wiley and sons Ins Publication.
  • Mohanty, S., Anand, S., Brahm, G.S. & Mohanty, P. (2003). Kinetics and mechanism of the reaction of chromium(III) and L-ornithine in aqueous solution. J. India, Chem. Soc. 80, 810-814.
  • Ayoko, G.A., Lyun, T.F. & Mamman, S. (1993). Kinetics and mechanism of oxidation of nitrilotriacetate by poly(pyridy)iron(III) complexes and dodecatungs-tocobaltate (III) ion-A comparative study. Ind. J. Chem. 32A, 1089-1091.
  • Kini, A.K., Farokhi, S.A. & Nandibewoor, S.T. (2002). A comparative study of ruthenium (III) catalysed oxidation of L-Leucine and isoleucine by alkaline permanganate. A kinetics and mechanistic approach. Trans. Met. Chem. 279, 532-540. DOI: 10.1023/A:1015641231236.[Crossref]
  • Pal, S.K., Peon, J., Bagchi, B., & Zewail, A.H. (2002). Biological water: femtosecond dynamics of macromolecular hydration. J. phys. Chem., B 106, 12376-12395. DOI: 10.1021/jp0213506.[Crossref]
  • Makote, R.D & Chatterjee, C. (1999). Kinetics and mechanism of oxidation of ascorbic acid by cobalt(III) amino polycarboxylato complexes in weakly basic media. Ind. J. Chem. A 38, 783-791.
  • Sarkar, D. & Chatterjee, D. (1996). Kinetics of desorption of proteins from the surface of protein-coated alumina by various desorbing reagents. J. colloid Interf. Sci. 178, 606-613. DIO:10.1006/jois.1996.0157.
  • Gosh, K.K. & Tiwary, L.K. (2003). Influence of sodium bis(2-ehyl-1-hexyl) sulfosuccinate/isooctane/water microwemulsions on the hydrolysis of salicylhydroxamic acid. J. Mol. Liquids. 102. 183-195. DOI: PII s0167-7322(02)00061-2.
  • Sarkar, D., Khilar, K.C., Begum, G. & Subharao, P.V. (2005). Kinetics of basic hydrolysis of tris (1,10 phenanthroline) iron(II) in triton X-100/hexanol/water reverse micelles in cyclohexane. J. Colloid. Interfer Sci. 268, 73-77. DOI: 10.1016/j.col surfa 2005.05.062.[Crossref]
  • Sarkar, D. & Subharao, P.V. (2005). Kinetics of dissociation of tris-(2,2'-bipyridyl) iron(II) in water solubilized by triton X-100 reverse micelles. J. Colloid. Interfer Sci., 288, 591-596. DOI: 10.1016/j.jcis.2005.03.026[Crossref]
  • Majumdar Tapas & Mahapatra Ambikesh. (2007). Kinetics of electron transfer reaction in micellar and reverse micellar media reduction of [Co(NH3)5] Cl2 by iron(II). J. Colloids Surfaces. 302, 360-365. DOI: 10.1016/j.colsufa.2007.02.059.[Crossref]
  • Cordes, E.H. & Gilter, C. (1973). Progress in Bioinorganic Chemistry Kaiser, E.T, Kezdy, F. J., Wiley, New York
  • Bunton C.A. (1979) Solution Chemistry of Surfactants Mital K.L. & Lindman, B. (Eds). Plenum, New York.
  • Bosco Bharathy, J.R., Ganesan, T.K., Rajkumar, E., Rajgopal, S., Manimaran, B., Rajendran, T. & Lieh lu Kuang. (2005). Micellar effect on the electron transfer reaction of chromium(V) ion with organic sulfides. Tetrahedron, 61, 4679-4687. DOI: 10.1016/j.tet.2005.02.052.[Crossref]
  • Blasko, A., Bunton, C.A. & Wright, S. (1993). Micellar charge effects on the oxidation of sulfides by periodate ion. J. phys. Chem., 97, 5435-5442. DOI: 0022-3654/93/2097-5435$04.00/0.
  • Balsko, A., Bunton, C.A. & Foroudian, H.S. (1995). Oxidation of organic sulfides in aqueous sullfobetaine micelles. J. Colloid. Interf. Sci., 175. 122-130. DOI: 10.1006/jcys.1995.1437.[Crossref]
  • Yao, H. & Richardson, D.E. (2003). Bicarbonate surfoxidants micellar oxidations of aryl sulfides with bicrarbonate-activated hydrogen peroxide. J. Am Chem. Soc., 125, 6211-6221. DOI: 10.21021/ja0274756.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_v10026-011-0016-7
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.