Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2010 | 12 | 4 | 64-71

Article title

Prediction of gas holdup in the three-phase fluidized bed: air/Newtonian and non-Newtonian liquid systems

Content

Title variants

Languages of publication

EN

Abstracts

EN
The application of the three-phase fluidization technology in wastewater treatment and other biochemical processes has been regularly addressed in the past decades. For the design and development of the three-phase fluidized bed reactors, knowledge of the hydrodynamic parameter such as gas holdup is essential and hence in this paper an attempt has been made to study the effect of fundamental and operating variables on gas holdup. On the basis of the experimental results, a unified correlation has been developed to predict gas holdup in the fluidized bed using the Newtonian and the non-Newtonian liquids. The experimental results showed good agreement with those predicted according to the developed correlation.

Publisher

Year

Volume

12

Issue

4

Pages

64-71

Physical description

Dates

published
1 - 1 - 2010
online
28 - 12 - 2010

Contributors

author
  • Department of Food Technology, Kongu Engineering College, Perundurai, Erode-638052, India
  • Department of Chemical Engineering, Erode Sengunthar Engineering College, Thudupathi, Erode-638057, India
author
  • Director of Research, Anna University, Coimbatore, India

References

  • Jena, H. M., Roy, G. K. & Meikap, B. C. (2008). Hydrodynamics of a gas-liquid-solid fluidized bed with hollow cylindrical particles. Chem. Eng. and Process.: Process Intensification, 48, 279-287. http://dx.doi.org/10.1016/j.cep.2008.04.003.[WoS][Crossref]
  • Jena, H. M., Sahoo, B. K., Roy, G. K. & Meikap, B. C. (2008). Characterization of hydrodynamic properties of a gas-liquid-solid three-phase fluidized bed with regular shape spherical glass bead particles, Chem. Eng. J., 145, 50-56, http://dx.doi.org/10.1016/j.cej.2008.03.002.[Crossref]
  • Sivakumar, V. & Senthilkumar, K. (2010). Prediction of minimum fluidization velocity in two-phase and three-phase fluidized beds: Air/Newtonian and non-Newtonian liquids, Int. J. Chem. Reactor Eng., 8, article A91,1-18. http://www.bepress.com/ijcre/vol8/A91.
  • Begovich, J. M. & Watson, J. S. (1978). Hydrodynamic characteristics of three-phase fluidized beds. Fluidization, 190. http://www.osti.gov/energycitations/product.biblio.jsp?osti_id=7208327.
  • Fan, L. S. (1989). Gas-liquid-solid fluidization engineering, Butterworth series in chemical engineering, Butterworth, Boston. DOI:10.1016/0017-9310(90)90132-E.[Crossref]
  • Dhanuka, U. R. & Stepanek, J. B. (1978). Gas and liquid holdup and pressure drop measurements in a three phase fluidized bed. Fluidization, 179.
  • Min, J., Drake, J. B., Heindel, T. J. & Fox, R. O. (2009). Experimental validation of CFD simulations of a lab-scale fluidized-bed reactor with and without side-gas injection, Particle Technology and Fluidization, 56, 1434. DOI: 10.1002/aic.12077.[Crossref]
  • Ramesh, K. V., Raju, G. M. J., Sarma, G. V. S. & Bhaskara Sarma, C. (2009). Effect of internal on phase holdups of a three-phase fluidized bed. Chem. Eng. J. 145, 393. DOI:10.1016/j.cej.2008.08.023.[Crossref][WoS]
  • Jena, H. M., Roy, G. K. & Mahabatra, S. S. (2010). Determination of optimum gas holdup conditions in a three-phase fluidized bed by genetic algorithm, Computers and chemical Eng. 34, 476. DOI: 10.1016/j.compchemeng.2009.07.03.[Crossref]
  • Bloxom, V. R., Costa, J., Herranz, J., Mac William, G. L., & Roth, S. R. (1975). Determination and correlation of hydrodynamic variables in a three-phase fluidized bed. MIT report N219, Oak Ridge National laboratory, Oak Ridge, TN,.
  • Parulekar, S. J. & Shah, Y. T. (1980). Steady state behavior of Gas-Liquid-Solid fluidized bed reactors. Chem. Eng. J. 20, 21-33. DOI: 10.1016/0300-9467(80)85003-9.[Crossref]
  • Khang, S. J., Schwartz, J. G., Buttke, R. D. (1983). A practical wake model for estimating bed expansion and holdup in three phase fluidized bed systems. Fluidization and fluid particle systems, AIChE Symp. Series, 79, 47.
  • Jean, R. H., Fan, L. S. (1987). On the particle terminal velocity in a gas liquid medium with liquid as the continuous phase. Can. J. Chem. Eng. 65, 881. DOI: 10.1002/cjce.5450650601.[Crossref]
  • Saberian-Broudjenni, M. N., Wild, G., Charpentier, J. C., Fortin, Y., Euzen, J. P., & Patoux, R. (1987). Contribution to hydrodynamic study of gas-liquid-solid fluidization bed reactors. Int. Chem. Eng. 27, 423. DOI: 10.1002/cjce.5450630405.[Crossref]
  • Fuentes, M., Mussati, M. C., Scenna, N. J. & Aguirre, P. A. (2009). Global modeling and simulation of a three-phase fluidized bed bioreactor, Computer and Chemical Eng., 33, 359. DOI:10.1016/j.compchemeng.2008.10.001[Crossref]
  • Yu, K. & Kim, S. D. (1988). Bubble Characteristics in the radial direction of three phase fluidized beds. AIChE J. 34, 2069. DOI:10.1002/aic.690341217.[Crossref]
  • Masud Hossain, Sk. & Das, M. (2010) Anaerobic biogas generation from sugar industry wastewaters in three-phase fluidized-bed bioreactor, Can. J. Chem. Eng. DOI:10.1002/cjce.20347.[WoS][Crossref]
  • Miura, H. & Kawase, Y. (1997). Hydrodynamics and mass transfer in three phase fluidized beds with non-Newtonian fluids. Chem. Eng. Sci. 52, 21-22, 4095-4104. DOI: 10.1016/S0009-2509(97)00251-0.[Crossref]
  • Miura, H., Takahashi, T. & Kawase, Y. (2001). Effect of pseudo plastic behavior of liquid in co-current three phase fluidized beds on bed expansion. Chem. Eng. Sci. 56, 6047. DOI: 10.1016/S0009-2509(01)00219-6.[Crossref]
  • Chhbra, R. P., Comiti, J., & Machac, I. (2001). Flow of non-Newtonian fluids in fixed and fluidised beds. Chem. Eng. Sci. 56, 1. DOI: 10.1016/S0009-2509(00)00207-4.[Crossref]
  • Van der Lee, L., Chandrasekaran, B., Hulme, I. & Kantzas, A. (2005). A non-invasive hydrodynamic study of gas-solid fluidized bed of linear low density polyethylene. Can. J. Chem. Eng., 83, 119. DOI: 10.1002/cjce.5450830120.[Crossref]
  • Sivakumar, V., Senthilkumar, K. & Akilamudhan, P. (2008) Prediction of liquid and solid holdup in three-phase fluidized bed: Air-Newtonian and non-Newtonian liquids. Biochem. Eng. Q. 22 (4), 401-410. http://hrcak.srce.hr/index.php?show=clanak&id_clanak_jezik=48524.
  • Safoniuk, M., Grace, J. R., Hackman, L. & McKnight, C. A. (2002). Gas hold-up in a three-phase fluidized bed. AIChE J. 48, 1581-1587. DOI: 10.1002/aic.690480720[Crossref]
  • Oh, J. S. & Kim, S. D. (1980). Phase holdup characteristics of three phase fluidized beds. J. Korean Ins. Chem. Ers. 18, 375. www.cheric.org/PDF/HHKH/HK18/HK18-5-03 75.
  • Nacef, S., Wild, G., Laurent, A. & Kim, S. D. (1992). Scale effects in gas-liquid-solid fluidization. Int. Chem. Eng. 32, 51. DOI: 0020-6318/3216-0051/S05.00.
  • Ramesh, K. & Murugesan, T. (2002). Minimum fluidization velocity and gas holdup in gas-liquid solid fluidized bed reactors. J. Chem. Tech. Biotech. 77, 129. DOI:10.1002/jctb.533.[Crossref]
  • Clift, R., Grace, J. R. & Weber M. R. (1979). Bubbles Drops and Particles, Academic Press New York. http://wapedia.mobi/en/Morton_number.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_v10026-010-0053-7
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.