Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2010 | 12 | 1 | 12-16

Article title

Improvement of enzyme stability via non-covalent complex formation with dextran against temperature and storage lifetime

Content

Title variants

Languages of publication

EN

Abstracts

EN
The optimal methodology to prepare the novel modified enzyme, polymer-enzyme complex, was developed to give a high catalytic activity in aqueous solution. The non-covalent complexes of two different enzymes (horseradish peroxidase and glucose oxidase) were prepared with various molar ratios (nD/nE 0,05; 0,1; 1; 5; 10; 15; 20) by using 75kDa dextran. The thermal stabilities of the obtained complexes were evaluated with the activities determined at different temperatures (25, 30, 35, 40, 50, 60, 70, 80°C) applying 60 minutes incubation time for pH 7. The complexes with the molar ratio nD/nHRP: 10 and nD/nGOD: 5 showed the highest thermal stability. Its activity was very high (ca. 1,5-fold higher activity than pure enzyme for HRP-dextran complexes) and almost the same between applying one hour incubation time and without incubation, and could also be measured at high temperatures (70, 80 °C). We finally succeeded in preparing dextran-enzyme complexes which showed higher activity than pure enzyme in aqueos solution at all temperatures for pH 7. In addition, the mentioned complexes at pH 7 had very long storage lifetime compared to purified enzyme at +4 °C; which is considered as a good feature for the usage in practice.

Publisher

Year

Volume

12

Issue

1

Pages

12-16

Physical description

Dates

published
1 - 1 - 2010
online
8 - 4 - 2010

Contributors

  • Faculty of Arts and Sciences, Department of Chemistry, Yildiz Technical University, Davutpasa Campus 34210 Esenler, Istanbul/TURKEY
author
  • Faculty of Chemical and Metallurgical Engineering, Department of Bioengineering, Yildiz Technical University, Davutpasa Campus 34210 Esenler, Istanbul/TURKEY

References

  • Xing, F., Cheng, G., Yang, B. & Ma, L., (2004). Microencapsulation of capsaicin by complex coacervation of gelatine Acacia, and tannins. J Appl Polym Sci. 91, 2669 - 2675. DOI: 10.1002/app.13449.[Crossref]
  • Xing, F., Cheng, G., Yang, B. & Ma, L., (2005). Nanoencapsulation of capsaicin by complex coacervation of gelatine, Acacia, and tannins. J Appl Polym Sci. 96, 2225 - 2229. DOI: 10.1002/app.21698[Crossref]
  • Champagne, C. P. & Fustier, P., (2007). Microencapsulation for the improved delivery of bioactive compounds into foods. Curr Opin Biotechnol. 18:184-90. DOI: 10.1016/j.copbio.2007.03.001[PubMed][Crossref]
  • Turgeon, S. L., et al. (2007). Protein-polysaccharide complexes and coacervates. Current Opinion in Colloid & Interface Science 12, 166 - 178. DOI: 10.1016/j.cocis.2007.07.007.[WoS][Crossref]
  • Daniel, S. K., (2007). Microparticles and nanoparticles for drug delivery. Biotechnol Bioeng. 96, 203 - 209. DOI: 10.1002/bit.21301.[Crossref]
  • Dickinson, E., (2006). Colloid science of mixed ingredients. Soft Matter 2, 642 - 652. DOI: 10.1039/b605670a.[Crossref]
  • Haug, I. J., Draget, K. I. & Smidsrod, O., (2004). Physical behaviour of fish gelatin-κ-carrageenan mixtures. Carbohydr Polym. 56, 11 - 19. DOI: 10.1016/j.carbpol.2003.10.014.[Crossref]
  • Vikelouda, M. & Kiosseoglou, V., (2004). The use of carboxymethylcellulose to recover potato proteins and control their functional properties. Food Hydrocoll 18, 21 - 27. DOI: 10.1016/S0268-005X(03)00038-9.[Crossref]
  • Damianou, K. & Kiosseoglou, V., (2006). Stability of emulsions containing a whey protein concentrate obtained from milk serum through carboxymethylcellulose complexation. Food Hydrocoll 20, 793 - 799. DOI:10.1016/j.foodhyd.2005.07.011.[Crossref]
  • Montilla, A., Casal, E., Moreno, J., Belloque, J., Olano, A. & Corzo, N., (2007). Isolation of bovine β-lactoglobulin from complexes with chitosan. Int Dairy J. 17, 459 - 464. DOI:10.1016/j.idairyj.2006.05.009.[WoS][Crossref]
  • Turgeon, S. L., Beaulieu, M., Schmitt, C. & Sanchez, C., (2007). Protein-polysaccharide interactions: phase-ordering kinetics, thermodynamic and structural aspects. Current Opinion in Colloid & Interface Science 8, 401 - 414. DOI: 10.1016/S1359-0294(03)00093-1.[Crossref]
  • Doublier, J. L., Garnier, C., Renard, D. & Sanchez, C., (2000). Protein-polysaccharide interactions. Curr Opin Colloid Interface Sci. 5, 202 - 214. DOI: 10.1016/S1359-0294(00)00054-6.[Crossref]
  • de Kruif, C. G., Weinbreck, F., de Vries, R., (2004). Complex coacervation of proteins and anionic polysaccharides. Curr Opin Colloid Interface Sci. 9, 340 - 349. DOI: 10.1016/j.cocis.2004.09.006.[Crossref]
  • Murakami, Y. & Hirata, A., (1999). Poly(Ethylene Glycol)-α-Chymotrypsin Complex Catalytically Active in Anhydrous Isooctane. Journal of Bioscience and Bioengineering 88, 441 - 443. DOI: 10.1016/S1389-1723(99)80224-2.[Crossref]
  • Blinkovsky, A. M., Khmelnitsky, Y. L. & Dordick, J. S., (1994). Organosoluble enzyme-polymer complexes: A novel type of biocatalyst for non-aqueous media. Biotechnol. Tech. 8, 33 - 38. DOI: 10.1007/BF00207630.[Crossref]
  • Otamiri, M., Adlercreutz, P. & Mattiasson, B., (1992). Complex formation between chymotrypsin and ethyl cellulose as a means to solubilize the enzyme in active form in toluene. Biocatalysis 6, 291 - 305. DOI: 10.3109/10242429209065249.[Crossref]
  • Otamiri, M., Adlercreutz, P. & Mattiasson, B., (1994). Polymer-polymer organic solvent two-phase system: A new type of reaction medium for bioorganic synthesis. Biotechnol. Bioeng. 43, 987 - 994. DOI: 10.1002/bit.260431012.[PubMed][Crossref]
  • Murakami, Y., Hoshi, R. & Hirata, A., (2003). Characterization of polymer-enzyme complex as a novel biocatalyst for non-aqueous enzymology. Journal of Molecular Catalysis B: Enzymatic 22, 79 - 88. DOI: 10.1016/S1381-1177(03)00009-2.[Crossref]
  • Crepon, B., Jozefonvicz, J., Chytry, V., Rihova, B. & Kopecek, J., (1991). Enzymatic degradation and immunogenic properties of derivatized dextrans. Biomaterials 12:550-4. DOI: 10.1016/0142-961(91)90049-G.[Crossref][PubMed]
  • Lee, K. Y. & Yuk, S. H., (2007). Polymeric protein delivery systems. Prog. Polym. Sci. 32, 669 - 697. DOI: 10.1016/j.progpolymsci.2007.04.001.[WoS][Crossref]
  • Sinha, V. R. & Kumria, R., (2001). Polysaccharides in colon-specific drug delivery. International Journal of Pharmaceutics 224, 19 - 38. DOI: 10.1016/S0378-5173(01)00720-7.[PubMed][Crossref]
  • Sanz, V., de Marcos, S., Castillo, J. R. & Galbán, J., (2005). Application of Molecular Absorption Properties of Horseradish Peroxidase for Self-Indicating Enzymatic Interactions and Analytical Methods. J Am Chem Soc. 127, 1038 - 1048. DOI: 10.1021/ja046830k.[Crossref]
  • Veitch, N. C. & Nigel, C., (2004). Horseradish peroxidase: a modern view of a classic enzyme. Phytochemistry 65, 249 - 259. DOI: 10.1016/j.phytochem.2003.10.022.[Crossref][PubMed]
  • Wei, Y., Feng, X., Chen, X., Hou, W. & Zhu, J. J., (2008). A super highly sensitive glucose biosensor based on Au nanoparticles-AgCl@polyaniline hybrid material. Biosens. Bioelectron. 23, 925 - 931. DOI: 10.1016/j.bios.2007.09.002.[Crossref]
  • Zhu, M., Jiang, Z. & Jing, W., (2005). Fabrication of polypyrrole-glucose oxidase biosensor based on multilayered interdigitated ultramicroelectrode array with containing trenches. Sens. Actuators. B: Chem. 110, 382 - 389. DOI: 10.1016/j.snb.2005.02.036.[Crossref]
  • Topcu Sulak, M., Gokdogan, O., Gulce, A. & Gulce, H., (2006). Amperometric glucose biosensor based on gold-deposited polyvinylferrocene film on Pt electrode. Biosens. Bioelectron. 21, 1719 - 1726. DOI: 10.1016/j.bios.2005.08.008.[Crossref][PubMed]
  • Iyer, P. V. & Ananthanarayan, L., (2008). Enzyme stability and stabilization-Aqueous and non-aqueous environment. Process Biochemistry, 43, 1019 - 1032. DOI: 10.1016/j.procbio.2008.06.004.[Crossref][WoS]
  • de la Casa, R. M., Sanchez-Montero, J. M. & Sinisterra, J. V., (1998). Modification of hydrophilicity/hydrophobicity of the microenvironment of lipase of Candida rugosa by dextrans, Biotechnology Letters. 21, 123 - 128. DOI: 10.1023/A:1005426101080.[Crossref]
  • de la Casa, R. M., Guisan, J. M., Sanchez-Montero, J. M. & Sinisterra, J. V., (2002). Modification of the activities of two different lipases from Candida rugosa with dextrans. Enzyme and Microbial Technology 30, 30 - 40. DOI: 10.1016/S0141-0229(01)00446-X.[Crossref]
  • Tanaka, M., Morimoto, A., Ishimori, K. & Morishima, I., (1998). Structure-activity relation of horseradish peroxidases as studied with mutations at heme distal and proximal sites. Pure and Appl Chem. 70, 911 - 916.[Crossref]
  • Altikatoglu, M., Arioz, C., Basaran, Y. & Kuzu, H., (2009). Stabilization of Horseradish Peroxidase by Covalent Conjugation with Dextran Aldehyde Against Temperature and ph Changes. Central Euorpean Journal of Chemistry. 7:3, 423 - 428. DOI: 10.2478/s11532-009-0041-z.[WoS][Crossref]
  • Jakopitsch, C., Regelsberger, G., Furtmüller, P. G., Rüker F., Peschek, G. A. & Obinger, C., (2002). Engineering the proximal heme cavity of catalase-peroxidase. Journal of Inorganic Biochemistry 91, 78 - 86. DOI:10.1016/S0162-0134(02)00374-4.[PubMed][Crossref]
  • Dilgimen, A. S., Mustafaeva, Z., Demchenco, M., Kaneko, T., Osada, Y. & Mustafaev, M., (2001) Water-soluble covalent conjugates of bovine serum albumin with anionic poly(N-isopropyl-acrylamide) and their immunogenicity. Biomaterials 22, 2383 - 2392. DOI: 10.1016/S01142-9612(00)00425-7.[PubMed][Crossref]
  • Mislovicova, D., Masarova, J., Bucko, M. & Gemeiner, P., (2006). Stability of penicillin G acylase modified with various polysaccharides. Enzyme and Microb. Technol. 39, 579 - 585. DOI: 10.1016/j.enzmictec.2005.11.012.[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_v10026-010-0003-4
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.