Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2009 | 11 | 2 | 46-50

Article title

Carbon modified TiO2 photocatalysts for water purification

Content

Title variants

Languages of publication

EN

Abstracts

EN
Carbon can form different structures with TiO2: carbon-doped TiO2, carbon coated TiO2 and composites of TiO2 and carbon. The presence of carbon layer on the surface of TiO2 as well as the presence of porous carbon in the composites with TiO2 can increase the concentration of organic pollutants on the surface of TiO2, facilitating the contact of the reactive species with the organic molecules. Carbon-doped TiO2 can extend the absorption of the light to the visible region by the narrowing of the band gap and makes the photocatalysts active under visible light irradiation. TiO2 loaded carbon can also work as a photocatalyst, on which the molecules are adsorbed in the pores of carbon and then they undergo the photocatalytic decomposition with UV irradiation. Enhanced photocatalytic activity for the destruction of some organic compounds in water was noticed on the carbon coated TiO2 and TiO2 loaded activated carbon, mostly because of the adsorptive role of carbon. However, in carbon-doped TiO2, the role of carbon is somewhat different, the replacement of carbon atom with Ti or oxygen and formation of oxygen vacancies are responsible for extending its photocatalytic activity towards the visible range.

Publisher

Year

Volume

11

Issue

2

Pages

46-50

Physical description

Dates

published
1 - 1 - 2009
online
19 - 6 - 2009

Contributors

  • Dept. of Chemical Techn. and Eng., West Pomeranian University of Technology, Szczecin, ul. Pułaskiego 10, 70-322 Szczecin, Poland
  • Dept. of Chemical Techn. and Eng., West Pomeranian University of Technology, Szczecin, ul. Pułaskiego 10, 70-322 Szczecin, Poland
author
  • Dept. of Chemical Techn. and Eng., West Pomeranian University of Technology, Szczecin, ul. Pułaskiego 10, 70-322 Szczecin, Poland
  • Dept. of Appl. Chemistry, Oita University, 700-Dannoharu, Oita 870-1192, Japan
  • Dept. of Appl. Chemistry, Oita University, 700-Dannoharu, Oita 870-1192, Japan
  • Aichi Institute of Technology, Yakusa, Toyota 470-0392, Japan

References

  • Piera, E., Tejedor, M.I., Zorn, M.E. & Anderson, M. A. (2004). Degradation of chlorophenols by means of advanced oxidation processes: a general review. Appl. Catal. B: Environ. 47(4), 219-256. DOI: 10.1016/j.apcatb.2003.09.010.[Crossref]
  • Herrmann, J. M., Matos, J., Disdier, J., Guillard, C., Laine, J., Malato, S. & Blanco, J. (1999). Solar photocatalytic degradation of 4-chlorophenol using the synergistic effect between titania and activated carbon in aqueous suspension. Catal. Today. 54, 255-265.[Crossref]
  • Matos, J., Laine, J. & Herrmann, J.-M. (1999). Association of activated carbons of different origins with titania in the photocatalytic purification of water. Carbon. 37(11), 1870-1872.[Crossref]
  • Khan, S.U.M., Al-Shahry, M., Ingler W.B. (2002). Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2. Science. 297(5590), 2243-2245. DOI: 10.1126/science.1075035.[Crossref]
  • Lettmann, C., Hildenbrand, K., Kisch, H., Macyk, W. & Maier, W.F. (2001). Visible light photodegradation of 4-chlorophenol with a coke-containing titanium dioxide photocatalyst. Appl. Catal. B: Environ. 32(4), 215-227.[Crossref]
  • Arana, J., Dona-Rodriguez, J. M., Tello Rendon, E., Garriga i Cabo, C., Gonzalez-Diaz, O., Herrera-Melian, J.A., Perez-Pena, J., Colon, G. & Navio, J.A. (2003). TiO2 activation by using activated carbon as a support: Part I. Surface characterisation and decantability study. Appl. Catal. B: Environ. 44(2), 161-172. DOI: 10.1016/S0926-3373(03)00107-3.[Crossref]
  • Arana, J., Dona-Rodriguez, J.M., Tello Rendon, E., Garriga i Cabo, C., Gonzalez-Diaz, O., Herrera-Melian, J.A., Perez-Pena, J., Colon, G. & Navio, J.A. (2003). TiO2 activation by using activated carbon as a support: Part II. Photoreactivity and FTIR study. Appl. Catal. B: Environ. 44(2), 153-160. DOI: 10.1016/S0926-3373(03)00075-4.[Crossref]
  • Nagaoka, S., Hamasaki, Y., Ishihara, S., Nagata, M., Iio, K., Nagasawa, C. & Ihara, H. (2002). Preparation of carbon/TiO2 microsphere composites from cellulose/TiO2 microsphere composites and their evaluation. J. Mol. Catal. A: Chem. 177(2), 255-263.
  • Tsumura, T., Kojitani, N., Izumi, I., Iwashita, N., Toyoda, M. & Inagaki, M. (2002). Carbon coating of anatase-type TiO2 and photoactivity. J. Mater. Chem. 12(5), 1391-1396. DOI: 10.1039/b201942f.[Crossref]
  • Tryba, B., Morawski, A.W., Tsumura, T., Toyoda, M. & Inagaki, M. (2004). Hybridization of adsorptivity with photocatalytic activity-carbon-coated anatase. J. Photochem. Photobiol., A: Chem. 167(2-3), 127-135. DOI: 10.1016/j.jphotochem.2004.04.011.[Crossref]
  • Inagaki, M., Kojin, F., Tryba, B. & Toyoda, M. (2005). Carbon-coated anatase: the role of the carbon layer for photocatalytic performance. Carbon. 43(8), 1652-1659. DOI: 10.1016/j.carbon.2005.01.043.[Crossref]
  • Jitianu, A., Cacciaguerra, T., Benoit, R., Delpeux, S., Beguin, F. & Bonnamy, S. (2004). Synthesis and characterization of carbon nanotubes-TiO2 nanocomposites. Carbon. 42(5-6), 1147-1151. DOI: 10.1016/j. carbon.2003.12.041.[Crossref]
  • Torimoto, T., Okawa, Y., Takeda, N. & Yoneyama, H. (1997). Effect of activated carbon content in TiO2-loaded activated carbon on photodegradation behaviors of dichloromethane. J. Photochem. Photobiol. A: Chem. 103(1-2), 153-157.[Crossref]
  • Toyoda, M., Nanbu, Y., Kito, T., Hirano, M. & Inagaki, M. (2003). Preparation and performance of anatase-loaded porous carbons for water purification. Desalination. 159(3), 273-282.
  • Zhang, X., Zhou, M. & Lei, L. (2005). Preparation of photocatalytic TiO2 coatings of nanosized particles on activated carbon by AP-MOCVD. Carbon. 43(8), 1700-1708. DOI: 10.1016/j.carbon.2005.02.013.[Crossref]
  • Li, Y., Li, X., Li, J. & Yin, J. (2006). Photocatalytic degradation of methyl orange by TiO2-coated activated carbon and kinetic study. Water Research. 40(6), 1119-1126. DOI: 10.1016/j.watres.2005.12.042.[Crossref]
  • Tryba, B., Morawski, A.W. & Inagaki, M. (2003). Application of TiO2-mounted activated carbon to the removal of phenol from water. Appl. Catal. B: Environ. 41(4), 427-433.[Crossref]
  • Tryba, B., Morawski, A.W., Toyoda, M. & Inagaki, M. (2003). TiO2-mounted activated carbon for the elimination of organic pollutants in water. Res. Adv. in Water Research. 4, 35-42.
  • Ding, Z., Hu, X., Yue, P.L., Lu, G.Q. & Greenfield, P.F. (2001). Synthesis of anatase TiO2 supported on porous solids by chemical vapor deposition. Catal. Today. 68(1-3), 173-182.[Crossref]
  • Ao, C.H. & Lee, S.C. (2003). Enhancement effect of TiO2 immobilized on activated carbon filter for the photodegradation of pollutants at typical indoor air level. Appl. Catal. B: Environ. 44(3), 191-205. DOI: 10.1016/S0926-3373(03)00054-7.[Crossref]
  • El-Sheikh, A.H., Newman, A.P., Al-Daffaee, H., Phull, S., Cresswell, N. & York, S. (2004). Deposition of anatase on the surface of activated carbon. Surface & Coatings Technology. 187(2-3), 284-292. DOI: 10.1016/j.surfcoat.2004.03.012.[Crossref]
  • Lee, D.-K., Kim, S.-C., Cho, I.-C., Kim, S.-J. & Kim, S.-W. (2004). Photocatalytic oxidation of microcystin-LR in a fluidized bed reactor having TiO2-coated activated carbon. Separ. Purif. Technol. 34(1-3), 59-66. DOI: 10.1016/S1383-5866(03)00175-8.[Crossref]
  • Yuan, R., Zheng, J., Guan & R., Zhao, Y. (2005). Surface characteristics and photocatalytic activity of TiO2 loaded on activated carbon fibers. Colloids and Surfaces A: Physicochem. Eng. Aspects. 254(1-3), 131-136. DOI: 10.1016/j.colsurfa.2004.11.027.[Crossref]
  • Tsumura, T., Kojitani, N., Umemura, H., Toyoda, M. & Inagaki, M. (2002). Composites between photoactive anatase-type TiO2 and adsorptive carbon. Appl. Surf. Scn. 196(1-4), 429-436.
  • Liu, S.X., Chen, X.Y. & Chen, X. (2007). A TiO2/AC composite photocatalyst with high activity and easy separation prepared by a hydrothermal method. J. Hazard. Mater. 143(1-2), 257-263. DOI: 10.1016/j.hazmat.2006.09.026.[WoS][Crossref]
  • Toyoda, M., Yano, T., Tsumura, T., Amao, Y. & Inagaki, M. (2006). Effects of carbon coating on TinO2n-1 for decomposition of iminoctadine triacetate in aqueous solution under visible light. J. Adv. Oxid. Technol. 9, 49-52.
  • Di Valentin, C., Pacchioni, G. & Selloni, A. (2005). Theory of carbon doping of titanium dioxide. Chem. Mat. 17(26), 6656-6665.[Crossref]
  • Choi, Y., Umebayashi, T. & Yoshikawa, M. (2004). Fabrication and characterization of C-doped anatase TiO2 photocatalysts. J. Mat. Sci. 39(5), 1837-1839.[Crossref]
  • Sakthivel, S. & Kisch, H. (2003). Angew. Chem. Int. Ed. 42, 4908-4911. DOI: 10.1002/anie.200351577.[Crossref]
  • Shen, M., Wu, Z., Huang, H., Du, Y., Zou, Z. & Yang, P. (2006). Carbon-doped anatase TiO2 obtained from TiC for photocatalysis under visible light irradiation. Mat. Lett. 60(5), 693-697. DOI: 10.1016/j,matlet.2005.09.068.[Crossref]
  • Tachikawa, T., Tojo, S., Kawai, K., Endo, M., Fujitsuka, M., Ohno, T., Nishijima, K., Miyamoto, Z. & Majami, T. (2004). Photocatalytic Oxidation Reactivity of Holes in the Sulfur- and Carbon-Doped TiO2 Powders Studied by Time-Resolved Diffuse Reflectance Spectroscopy. J. Phys. Chem. B: 108(50), 19299-19306. DOI: 10.1021/jp.0470593.[Crossref]
  • Janus, M., Tryba, B., Inagaki, M. & Morawski, A.W. (2004). New preparation of a carbon-TiO2 photocatalyst by carbonization of n-hexane deposited on TiO2. Appl. Catal. B: Environ. 52(1), 61-67. DOI: 10.1016/j.apcatb.2004.03.011.[Crossref]
  • Janus, M., Inagaki, M., Tryba, B., Toyoda, M., Morawski, A.W. (2006). Carbon-modified TiO2 photocatalyst by ethanol carbonisation. Appl. Catal. B: Environ. 63(3-4), 272-276. DOI: 10.1016/j.apcatb.2005.10.005.[Crossref]
  • Janus, M., Toyoda, M., Inagaki, M., Tryba, B. & Morawski, A.W. (2007). J. Adv. Oxid. Technol. 10(2), 260-266.
  • Park, J.H., Kim, S. & Bard, A.J. (2006). Novel carbondoped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting. Nano Lett. 6(1), 24-28. DOI: 10.1021/nl051807y.[Crossref][PubMed]
  • Ohno, T. & Tsubota, T. (2004). Degradation of Methylene Blue on carbonate speices doped TiO2 photocatalysts under visible light. Chem. Lett. 33(6), 750-751.[Crossref]
  • Lin, L., Lin W., Zhu, Y.X., Zhao, B.Y., Xie, Y.C., He, Y. & Zhu, Y.F. (2005). Uniform carbon-covered titania and its photocatalytic property. J. Mol. Catal. A: Chem. 236(1-2), 46-53. DOI: 10.1016/j.molcata.2005.04.028.[Crossref]
  • Tsumura, T., Hattori, Y., Kaneko, K., Inagaki, M. & Toyoda, M. (2004). Formation of the Ti4O7 phase through interaction between coated carbon and TiO2. Desalination. 169, 269-275. DOI: 10.1016/j.desal.2003.11.007.[Crossref]
  • Tryba, B, Morawski, A.W. & Inagaki, M. (2003). A new route for preparation of TiO2-mounted activated carbon. Appl. Catal. B: Environ. 46(1), 203-208. DOI: 10.1016/S0926-3373(03)00214-5.[Crossref]
  • Inagaki, M., Morishita, T., Kuno, A., Kito, T., Nirano, M., Suwa, T. & Kusakawa, K. (2004). Carbon foams prepared from polyimide using urethane foam template. Carbon 42(3), 497-502. DOI: 10.1016/j.carbon.2003.12.080.[Crossref]
  • Berry, R.J. & Mueller, M.R. (1994). Photocatalytic decomposition of crude oil sicks using TiO2 on a floating substrate. Microchem. J. 50, 28-32.[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_v10026-009-0023-0
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.