Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2013 | 68 | 1-2 |

Article title

Statistical Analysis of Adsorption Experimental Data – the Influence of the Selection of Error Function on Optimized Isotherm Parameters

Content

Title variants

Languages of publication

EN

Abstracts

EN
Experimental adsorption data were analysed by fitting them to nonlinear forms of Langmuir and Freundlich isotherms. Optimization of the parameters was performed by nonlinear least square regression with different forms of error function, namely: vertical, horizontal, orthogonal, normal and squared normal. The results showed, that isotherm parameters may be affected by the selection of error function and that they are more sensitive to its’ form in case of Langmuir equation. We did not find any correlation between a type of the function and performance of the regression – procedure requires optimization for every experimental dataset and every model being fitted.

Keywords

Year

Volume

68

Issue

1-2

Physical description

Dates

online
2014-10-17

Contributors

  • Department of Radiochemistry and Colloid Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University Pl. Marii Curie-Skłodowskiej 3, 20-031 Lublin, Poland
  • Department of Radiochemistry and Colloid Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University Pl. Marii Curie-Skłodowskiej 3, 20-031 Lublin, Poland

References

  • 1. M. I. El-Khaiary, Journal of Hazardous Materials, 158, 73, (2008).
  • 2. T. Robinson et al., Bioresource Technology, 77, 247, (2001).
  • 3. Y. S. Ho et al., Process Biochemistry, 40, 119, (2005).
  • 4. G. McKay et al., Water Air Soil Pollution, 114, 423, (1999).
  • 5. I. Langmuir, Journal of the American Chemical Society, 38, 2221, (1916).
  • 6. H. M. F. Freundlich, Zeitschrift für Physikalische Chemie, 57, 385, (1906).
  • 7. S. Chatterjee and J. S. Simonoff, “Handbook of Regression Analysis”, John Wiley and Sons, New Jersey, 2013.
  • 8. N. R. Draper and H. Smith, “Applied Regression Analysis”, John Wiley and Sons, New York, 1998.
  • 9. “Measurement Error in Nonlinear Models. A Modern Perspective”, Monographs on Statistics and Applied Probability, 105, Taylor and Francis Group, Boca Raton, 2006.
  • 10. M. Hadi et al., Chemical Engineering Journal, 160, 408, (2010).
  • 11. M. Walesiuk and E. Gantar, “Statystyczna analiza danych z wykorzystaniem programu R”, Wydawnictwo Naukowe PWN, Warszawa, 2012.
  • 12. H.-T. Thai et al., Journal of Pharmacokinetics and Pharmacodynamics, 41, 15, (2014).[Crossref]
  • 13. A. Spiess and N. Neumayer, BioMed Central Pharmacology, 10, 6, (2010)
  • 14. W. C. Rooney and L. T. Biegler, Process Systems Engineering, 47, 1794, (2001).

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_umcschem-2013-0006
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.