Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2013 | 8 | 6 | 749-761

Article title

Parahippocampal corpora amylacea and neuronal lipofuscin in human aging

Content

Title variants

Languages of publication

EN

Abstracts

EN
The aim of this research was to quantify the number of corpora amylacea and lipofuscin-bearing neurons in the parahippocampal region of the brain. Right parahippocampal gyrus specimens of 30 cadavers were used as material for histological and morphometric analyses. A combined Alcian Blue and Periodic Acid-Schiff technique was used for identification and quantification of corpora amylacea and lipofuscin-bearing neurons. Immunohistochemistry was performed using S100 polyclonal, neuron-specific enolase and glial fibrillary acidic protein monoclonal antibodies for differentiation of corpora amylacea and other spherical inclusions of the aging brain. Cluster analysis of obtained data showed the presence of three age groups (median age: I = 41.5, II = 68, III = 71.5). The second group was characterized by a significantly higher numerical density of subcortical corpora amylacea and number of lipofuscin-bearing neurons than other two groups. Values of the latter cited parameters in the third group were insignificantly higher than the first younger group. Linear regression showed that number of parahippocampal lipofuscin-bearing neurons significantly predicts numerical density of subcortical corpora amylacea. The above results suggest that more numerous parahippocampal region corpora amylacea and lipofuscin-bearing neurons in some older cases might represent signs of its’ neurons quantitatively-altered metabolism.

Publisher

Journal

Year

Volume

8

Issue

6

Pages

749-761

Physical description

Dates

published
1 - 12 - 2013
online
6 - 12 - 2013

Contributors

  • Medical Faculty, Department of Anatomy, University of Podgorica, Kruševac bb, 81000, Podgorica, Montenegro
  • Medical Faculty, Department of Anatomy, University of Niš, Blvd. Dr Zoran Djindjić 81, 18000, Niš, Serbia
  • Medical Faculty, Department of Anatomy, University of Niš, Blvd. Dr Zoran Djindjić 81, 18000, Niš, Serbia
  • Medical Faculty, Department of Anatomy, University of Niš, Blvd. Dr Zoran Djindjić 81, 18000, Niš, Serbia
  • Medical Faculty, Department of Pathology, Clinical Center Niš, University of Niš, Blvd. Dr Zoran Djindjić 48, 18000, Niš, Serbia
  • Faculty of Sport and Physical Education, Department of medicine, University of Niš, Čarnojevićeva 10A, 18000, Niš, Serbia
  • Medical Faculty, Department of Anatomy, University of Niš, Blvd. Dr Zoran Djindjić 81, 18000, Niš, Serbia
  • Medical Faculty, Department of Anatomy, University of Niš, Blvd. Dr Zoran Djindjić 81, 18000, Niš, Serbia

References

  • [1] Blaizot X., Martinez-Marcos A., Arroyo-Jimenez Md Mdel M., Marcos P., Artacho-Pérula E., Muñoz M., et al., The parahippocampal gyrus in the baboon: anatomical, cytoarchitectonic and magnetic resonance imaging (MRI) studies, Cereb. Cortex., 2004, 14, 231–246 http://dx.doi.org/10.1093/cercor/bhg123[Crossref]
  • [2] Van Hoesen GW., Anatomy of the medial temporal lobe Magn. Reson. Imaging., 1995, 13, 1047–1055 http://dx.doi.org/10.1016/0730-725X(95)02012-I[Crossref]
  • [3] Eichenbaum H., Lipton PA., Towards a functional organization of the medial temporal lobe memory system: role of the parahippocampal and medial entorhinal cortical areas, Hippocampus., 2008, 18, 1314–1324 http://dx.doi.org/10.1002/hipo.20500[Crossref][WoS]
  • [4] Keller JN., Age-related neuropathology, cognitive decline, and Alzheimer’s disease, Ageing. Res. Rev., 2006, 5, 1–13 http://dx.doi.org/10.1016/j.arr.2005.06.002[Crossref]
  • [5] Tisserand DJ., Visser PJ., van Boxtel MP., Jolles J., The relation between global and limbic brain volumes on MRI and cognitive performance in healthy individuals across the age range, Neurobiol. Aging., 2000, 21, 569–576 http://dx.doi.org/10.1016/S0197-4580(00)00133-0[Crossref]
  • [6] Du AT., Schuff N., Amend D., Laakso MP., Hsu YY., Jagust WJ., et al., Magnetic resonance imaging of the entorhinal cortex and hippocampus in mild cognitive impairment and Alzheimer’s disease, J. Neurol. Neurosurg. Psychiatry., 2001, 71, 441–447 http://dx.doi.org/10.1136/jnnp.71.4.441[Crossref]
  • [7] Goncharova II., Dickerson BC., Stoub TR., deToledo-Morrell L., MRI of human entorhinal cortex: a reliable protocol for volumetric measurement. Neurobiol. Aging., 2001, 22, 737–745 http://dx.doi.org/10.1016/S0197-4580(01)00270-6[Crossref]
  • [8] Bottino CM., Castro CC., Gomes RL., Buchpiguel CA., Marchetti RL., Neto MR., Volumetric MRI measurements can differentiate Alzheimer’s disease, mild cognitive impairment, and normal aging, Int. Psychogeriatr., 2002, 14, 59–72 http://dx.doi.org/10.1017/S1041610202008281[Crossref]
  • [9] Pantel J., Kratz B., Essig M., Schröder J., Parahippocampal volume deficits in subjects with aging-associated cognitive decline, Am. J. Psychiatry., 2003, 160, 379–382 http://dx.doi.org/10.1176/appi.ajp.160.2.379[Crossref]
  • [10] Pennanen C., Kivipelto M., Tuomainen S., Hartikainen P., Hänninen T., Laakso MP., et al., Hippocampus and entorhinal cortex in mild cognitive impairment and early AD, Neurobiol. Aging., 2004, 25, 303–310 http://dx.doi.org/10.1016/S0197-4580(03)00084-8[Crossref]
  • [11] Burgmans S., van Boxtel MP., van den Berg KE., Gronenschild EH., Jacobs HI., Jolles J., et al., The posterior parahippocampal gyrus is preferentially affected in age-related memory decline, Neurobiol. Aging., 2011, 32, 1572–1578 http://dx.doi.org/10.1016/j.neurobiolaging.2009.09.008[WoS][Crossref]
  • [12] Wang H., Golob E., Bert A., Nie K., Chu Y., Dick MB., et al., Alterations in regional brain volume and individual MRI-guided perfusion in normal control, stable mild cognitive impairment, and MCI-AD converter, J. Geriatr. Psychiatry. Neurol., 2009, 22, 35–45 http://dx.doi.org/10.1177/0891988708328212[Crossref][WoS]
  • [13] Sánchez-Benavides G., Gómez-Ansón B., Molinuevo JL., Blesa R., Monte GC., Buschke H., et al., Medial temporal lobe correlates of memory screening measures in normal aging, MCI, and AD. J. Geriatr. Psychiatry. Neurol., 2010, 23, 100–108 http://dx.doi.org/10.1177/0891988709355271[WoS][Crossref]
  • [14] Echávarri C., Aalten P., Uylings HB., Jacobs HI., Visser PJ., Gronenschild EH., et al., Atrophy in the parahippocampal gyrus as an early biomarker of Alzheimer’s disease, 2011, Brain. Struct. Funct., 2011, 215, 265–271 http://dx.doi.org/10.1007/s00429-010-0283-8[Crossref][WoS]
  • [15] Miettinen PS., Pihlajamäki M., Jauhiainen AM., Niskanen E., Hänninen T., Vanninen R., et al., Structure and function of medial temporal and posteromedial cortices in early Alzheimer’s disease, 2011, Eur. J. Neurosci., 34, 320–330 http://dx.doi.org/10.1111/j.1460-9568.2011.07745.x[Crossref]
  • [16] Raz N., Gunning-Dixon FM., Head D., Dupuis JH., Acker JD., Neuroanatomical correlates of cognitive aging: evidence from structural magnetic resonance imaging, Neuropsychology., 1998, 12, 95–114 http://dx.doi.org/10.1037/0894-4105.12.1.95[Crossref]
  • [17] Raz N., Rodrigue KM., Head D., Kennedy KM., Acker JD., Differential aging of the medial temporal lobe: a study of a five-year change, Neurology., 2004, 62, 433–438 http://dx.doi.org/10.1212/01.WNL.0000106466.09835.46[Crossref]
  • [18] Raz N., Lindenberger U., Rodrigue KM., Kennedy KM., Head D., Williamson A., et al., Regional brain changes in aging healthy adults: general trends, individual differences and modifiers, Cereb. Cortex., 2005, 15, 1676–1689 http://dx.doi.org/10.1093/cercor/bhi044[Crossref]
  • [19] Raz N., Ghisletta P., Rodrigue KM., Kennedy KM., Lindenberger U., Trajectories of brain aging in middle-aged and older adults: regional and individual differences, Neuroimage., 2010, 51, 501–511 http://dx.doi.org/10.1016/j.neuroimage.2010.03.020[Crossref]
  • [20] Anderton BH., Ageing of the brain, Mech. Ageing. Dev., 2002, 123, 811–817 http://dx.doi.org/10.1016/S0047-6374(01)00426-2[Crossref]
  • [21] Rapp PR., Deroche PS., Mao Y., Burwell RD., Neuron number in the parahippocampal region is preserved in aged rats with spatial learning deficits, Cereb. Cortex., 2002, 12, 1171–1179 http://dx.doi.org/10.1093/cercor/12.11.1171[Crossref]
  • [22] Heinsen H., Henn R., Eisenmenger W., Götz M., Bohl J., Bethke B., et al., Quantitative investigations on the human entorhinal area: left-right asymmetry and age-related changes, Anat. Embryol. (Berl)., 1994, 190, 181–194
  • [23] Gazzaley AH., Thakker MM., Hof PR., Morrison JH., Preserved number of entorhinal cortex layer II neurons in aged macaque monkeys, Neurobiol. Aging., 1997, 18, 549–553 http://dx.doi.org/10.1016/S0197-4580(97)00112-7[Crossref]
  • [24] Merrill DA., Roberts JA., Tuszynski MH., Conservation of neuron number and size in entorhinal cortex layers II, III, and V/VI of aged primates, J. Comp. Neurol., 2000, 422, 396–401 http://dx.doi.org/10.1002/1096-9861(20000703)422:3<396::AID-CNE6>3.0.CO;2-R[Crossref]
  • [25] Stranahan AM., Mattson MP., Selective vulnerability of neurons in layer II of the entorhinal cortex during aging and Alzheimer’s disease, Neural. Plast., 2010, http://www.hindawi.com/journals/np/2010/108190 [WoS]
  • [26] Derflinger S., Sorg C., Gaser C., Myers N., Arsic M., Kurz A., et al., Grey-matter atrophy in Alzheimer’s disease is asymmetric but not lateralized, J. Alzheimers. Dis., 2011, 25, 347–357. [WoS]
  • [27] Cavanagh JB., Corpora-amylacea and the family of polyglucosan diseases. Brain. Res. Brain. Res. Rev., 1999, 29, 265–295 http://dx.doi.org/10.1016/S0165-0173(99)00003-X[Crossref]
  • [28] Kimura T., Takamatsu J., Miyata T., Miyakawa T., Horiuchi S., Localization of identified advanced glycation end-product structures, N epsilon(carboxymethyl)lysine and pentosidine, in age-related inclusions in human brains, Pathol. Int., 1998, 48, 575–579 http://dx.doi.org/10.1111/j.1440-1827.1998.tb03953.x[Crossref]
  • [29] Singhrao SK., Neal JW., Piddlesden SJ., Newman GR., New immunocytochemical evidence for a neuronal/oligodendroglial origin for corpora amylacea, Neuropathol. Appl. Neurobiol., 1994, 20, 66–73 http://dx.doi.org/10.1111/j.1365-2990.1994.tb00958.x[Crossref]
  • [30] Singhrao SK., Morgan BP., Neal JW., Newman GR., A functional role for corpora amylacea based on evidence from complement studies, Neurodegeneration., 1995, 4, 335–345 http://dx.doi.org/10.1016/1055-8330(95)90024-1[Crossref]
  • [31] Buervenich S., Olson L., Galter D., Nestin-like immunoreactivity of corpora amylacea in aged human brain, Brain. Res. Mol. Brain. Res., 2001, 94, 204–208 http://dx.doi.org/10.1016/S0169-328X(01)00166-8[Crossref]
  • [32] Double KL., Dedov VN., Fedorow H., Kettle E., Halliday GM., Garner B., et al., The comparative biology of neuromelanin and lipofuscin in the human brain, Cell. Mol. Life. Sci., 2008, 65, 1669–1682 http://dx.doi.org/10.1007/s00018-008-7581-9[Crossref][WoS]
  • [33] Sulzer D., Mosharov E., Talloczy Z., Zucca FA., Simon JD., Zecca L., Neuronal pigmented autophagic vacuoles: lipofuscin, neuromelanin, and ceroid as macroautophagic responses during aging and disease, J. Neurochem., 2008, 106, 24–36 http://dx.doi.org/10.1111/j.1471-4159.2008.05385.x[Crossref][WoS]
  • [34] Boellaard JW., Harzer K., Schlote W., Variations of the ultrastructure of neuronal lipofuscin during childhood and adolescence in the human Ammon’s horn, Ultrastruct. Pathol., 2006, 30, 387–391 http://dx.doi.org/10.1080/01913120600854137[Crossref]
  • [35] Russ J.C., Image analysis of food microstructure, 1st ed., CRC Press Taylor &Francis Group, Boca Raton Florida, 2004 http://dx.doi.org/10.1201/9781420038996
  • [36] Kališnik M., Blejec A., Pajer Z., Majhenc J., Metric characteristics of various methods for numerical density estimation in transmission light microscopy - a computer simulation, 2001, Image. Anal. Stereol. 2001, 20, 15–25 http://dx.doi.org/10.5566/ias.v20.p15-25[Crossref]
  • [37] Leel-Ossy L., New data on the ultrastructure of the corpus amylaceum (polyglucosan body), Pathol. Oncol. Res., 2001, 7, 145–150 http://dx.doi.org/10.1007/BF03032582[Crossref]
  • [38] Nishimura A., Sawada S., Ushiyama I., Yamamoto Y., Nakagawa T., Tanegashima A., et al., Lectinhistochemical detection of degenerative glycoconjugate deposits in human brain, Forensic. Sci. Int., 2000, 113 265–269 http://dx.doi.org/10.1016/S0379-0738(00)00228-0[Crossref]
  • [39] Abel TJ., Hebb AO., Keene CD., Born DE., Silbergeld DL., Parahippocampal corpora amylacea: case report, Neurosurgery., 2010, 66, E1206–1207 http://dx.doi.org/10.1227/01.NEU.0000369196.94664.4E[WoS][Crossref]
  • [40] Selmaj K., Pawłowska Z., Walczak A., Koziołkiewicz W., Raine CS., Cierniewski CS., Corpora amylacea from multiple sclerosis brain tissue consists of aggregated neuronal cells. Acta. Biochim. Pol., 2008, 55, 43–49.
  • [41] Hoyaux D., Decaestecker C., Heizmann CW., Vogl T., Schäfer BW., Salmon I., et al., S100 proteins in Corpora amylacea from normal human brain, Brain. Res., 2000, 867, 280–288 http://dx.doi.org/10.1016/S0006-8993(00)02393-3[Crossref]
  • [42] Takahashi K., Iwata K., Nakamura H., Intra-axonal corpora amylacea in the CNS, Acta. Neuropathol., 1977, 37, 165–167 http://dx.doi.org/10.1007/BF00692062[Crossref]
  • [43] Nishio S., Morioka T., Kawamura T., Fukui K., Nonaka H., Matsushima M., Corpora amylacea replace the hippocampal pyramidal cell layer in a patient with temporal lobe epilepsy, Epilepsia., 2001, 42, 960–962 http://dx.doi.org/10.1046/j.1528-1157.2001.01601.x[Crossref]
  • [44] Gray DA., Woulfe J., Lipofuscin and aging: a matter of toxic waste, Sci. Aging. Knowledge. Environ., 2005, http://sageke.sciencemag.org/cgi/content/full/2005/5/re1 [Crossref]
  • [45] Riga D., Riga S., Halalau F., Schneider F., Brain lipopigment accumulation in normal and pathological aging, Ann. N. Y. Acad. Sci., 2006, 1067, 158–163 http://dx.doi.org/10.1196/annals.1354.019[Crossref]
  • [46] Nakano M., Oenzil F., Mizuno T., Gotoh S., Agerelated changes in the lipofuscin accumulation of brain and heart, Gerontology., 1995, 41, 69–79 http://dx.doi.org/10.1159/000213726[Crossref]
  • [47] Shimada A., Keino H., Kawamura N., Chiba Y., Hosokawa M., Limbic structures are prone to agerelated impairments in proteasome activity and neuronal ubiquitinated inclusions in SAMP10 mouse: a model of cerebral degeneration, Neuropathol. Appl. Neurobiol., 2008, 34, 33–51 [WoS]
  • [48] Kimura T., Fujise N., Ono T., Shono M., Yuzuriha T., Katsuragi S., et al., Identification of an aging-related spherical inclusion in the human brain, Pathol. Int., 2002, 52, 636–642 http://dx.doi.org/10.1046/j.1440-1827.2002.01402.x[Crossref]
  • [49] Raz N., Rodrigue KM., Differential aging of the brain: patterns, cognitive correlates and modifiers, Neurosci. Biobehav. Rev., 2006, 30, 730–748 http://dx.doi.org/10.1016/j.neubiorev.2006.07.001[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11536-013-0214-1
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.