Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2013 | 8 | 4 | 509-516

Article title

Role of antioxidant vitamins administration on the oxidative stress

Content

Title variants

Languages of publication

EN

Abstracts

EN
The health-promoting effects of antioxidant vitamins C and E supplementation are unclear. This study investigated the effects of vitamins C and E on the activities of reactive oxygen species (ROS)-scavenging enzymes and protein and lipid peroxidation statuses under resting and exercise-induced conditions. Thirteen healthy, previously untrained males (age 20–21 years) participated in this study. Seven subjects performed physical exercise using a cycle ergometer, and six performed a 6-min walk test (6MWT) prior to vitamin administration and after 1-week oral administration of vitamin C (1000 mg/day) and vitamin E (300 IU/day). Venous blood samples were collected before and after exercise. Plasma vitamin C concentration, superoxide dismutase (SOD) activity, glutathione peroxidase (GPx) activity, and protein carbonyl and thiobarbituric acid-reactive substance (TBARS) contents were measured. Antioxidant supplementation increased vitamin C concentration by 34% (p<0.05), decreased SOD activity by 17% (p<0.05), increased GPx activity by 13% (p<0.05), and increased the GPx/SOD activity ratio by 37% (p<0.05). Protein carbonyl and TBARS contents were unaffected. Antioxidant vitamins effectively increase the plasma GPx/SOD activity ratio, but fail to reduce protein carbonyl levels induced by exercise.

Publisher

Journal

Year

Volume

8

Issue

4

Pages

509-516

Physical description

Dates

published
1 - 8 - 2013
online
12 - 6 - 2013

Contributors

author
author
  • Departments of Pathology, Osaka Medical Center for Cancer and Cardiovascular Diseases, 1-3-3 Nakamichi, Higashinari, Osaka, 537-8511, Japan
  • Departments of Pathology, Osaka Medical Center for Cancer and Cardiovascular Diseases, 1-3-3 Nakamichi, Higashinari, Osaka, 537-8511, Japan
author
  • Departments of Pathology, Osaka Medical Center for Cancer and Cardiovascular Diseases, 1-3-3 Nakamichi, Higashinari, Osaka, 537-8511, Japan
  • Departments of Pathology, Osaka Medical Center for Cancer and Cardiovascular Diseases, 1-3-3 Nakamichi, Higashinari, Osaka, 537-8511, Japan
  • Departments of Pathology, Osaka Medical Center for Cancer and Cardiovascular Diseases, 1-3-3 Nakamichi, Higashinari, Osaka, 537-8511, Japan
  • Department of Rehabilitation, Kobe International University, 9-1-6, Koyocho-naka, Higashinada, Kobe, 658-0032, Japan
  • Departments of Pathology, Osaka Medical Center for Cancer and Cardiovascular Diseases, 1-3-3 Nakamichi, Higashinari, Osaka, 537-8511, Japan

References

  • [1] Halliwell B., Oxidative stress, nutrition and health. Experimental strategies for optimization of nutritional antioxidant intake in humans, Free Radic. Res. 1996, 25, 57–74 http://dx.doi.org/10.3109/10715769609145656[Crossref]
  • [2] Davies K.J., Quintanilha A.T., Brooks G.A., Packer L., Free radicals and tissue damage produced by exercise, Biochem. Biophys. Res. Commun. 1982, 107, 1198–1205 http://dx.doi.org/10.1016/S0006-291X(82)80124-1[Crossref]
  • [3] Commoner B., Townsend J., Pake G.E., Free radicals in biological materials, Nature 1954, 174, 689–691 http://dx.doi.org/10.1038/174689a0[Crossref]
  • [4] Sastre J., Asensi M., Gasco E., Pallardo F.V., Ferrero J.A., Furukawa T., et al., Exhaustive physical exercise causes oxidation of glutathione status in blood: prevention by antioxidant administration, Am. J. Physiol. 1992, 263, R992–995
  • [5] Goldfarb A.H., McKenzie M.J., Bloomer R.J., Gender comparisons of exercise-induced oxidative stress: influence of antioxidant supplementation, Appl. Physiol. Nutr. Metab. 2007, 32, 1124–1131 http://dx.doi.org/10.1139/H07-078[Crossref][WoS]
  • [6] Ryan M.J., Dudash H.J., Docherty M., Geronilla K.B., Baker B.A., Haff G.G., et al., Vitamin E and C supplementation reduces oxidative stress, improves antioxidant enzymes and positive muscle work in chronically loaded muscles of aged rats, Exp. Gerontol. 2010, 45, 882–895 http://dx.doi.org/10.1016/j.exger.2010.08.002[WoS][Crossref]
  • [7] Xu X.M., Moller S.G., ROS removal by DJ-1: Arabidopsis as a new model to understand Parkinson’s Disease, Plant. Signal. Behav. 2010, 5, 1034–1036 http://dx.doi.org/10.4161/psb.5.8.12298[Crossref]
  • [8] Elchuri S., Oberley T.D., Qi W., Eisenstein R.S., Jackson Roberts L., Van Remmen H., et al., CuZnSOD deficiency leads to persistent and widespread oxidative damage and hepatocarcinogenesis later in life, Oncogene 2005, 24, 367–380 http://dx.doi.org/10.1038/sj.onc.1208207[Crossref]
  • [9] Muller F.L., Song W., Liu Y., Chaudhuri A., Pieke-Dahl S., Strong R., et al., Absence of CuZn superoxide dismutase leads to elevated oxidative stress and acceleration of age-dependent skeletal muscle atrophy, Free Radic. Biol. Med. 2006, 40, 1993–2004 http://dx.doi.org/10.1016/j.freeradbiomed.2006.01.036[Crossref]
  • [10] Gomez-Cabrera M.C., Domenech E., Romagnoli M., Arduini A., Borras C., Pallardo F.V., et al., Oral administration of vitamin C decreases muscle mitochondrial biogenesis and hampers traininginduced adaptations in endurance performance, Am. J. Clin. Nutr. 2008, 87, 142–149
  • [11] Powers S.K., Duarte J., Kavazis A.N., Talbert E.E., Reactive oxygen species are signalling molecules for skeletal muscle adaptation, Exp. Physiol. 2010, 95, 1–9 http://dx.doi.org/10.1113/expphysiol.2009.050526[WoS][Crossref]
  • [12] Higashida K., Kim S.H., Higuchi M., Holloszy J.O., Han D.H., Normal adaptations to exercise despite protection against oxidative stress, Am. J. Physiol. Endocrinol. Metab. 2011, 301, E779–784 http://dx.doi.org/10.1152/ajpendo.00655.2010[Crossref]
  • [13] Theodorou A.A., Nikolaidis M.G., Paschalis V., Koutsias S., Panayiotou G., Fatouros I.G., et al., No effect of antioxidant supplementation on muscle performance and blood redox status adaptations to eccentric training, Am. J. Clin. Nutr. 2011, 93, 1373–1383 http://dx.doi.org/10.3945/ajcn.110.009266[WoS][Crossref]
  • [14] Yfanti C., Akerstrom T., Nielsen S., Nielsen A.R., Mounier R., Mortensen O.H., et al., Antioxidant supplementation does not alter endurance training adaptation, Med. Sci. Sports. Exerc. 2010, 42, 1388–1395 [WoS]
  • [15] Ristow M., Zarse K., Oberbach A., Kloting N., Birringer M., Kiehntopf M., et al., Antioxidants prevent health-promoting effects of physical exercise in humans, Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 8665–8670 http://dx.doi.org/10.1073/pnas.0903485106[Crossref]
  • [16] Nikolaidis M.G., Kerksick C.M., Lamprecht M., McAnulty S.R., Does vitamin C and E supplementation impair the favorable adaptations of regular exercise?, Oxid. Med. Cell. Longev. 2012, 2012, 707941 [WoS]
  • [17] Halliwell B., Biochemistry of oxidative stress, Biochem. Soc. Trans. 2007, 35, 1147–1150 http://dx.doi.org/10.1042/BST0351147[Crossref]
  • [18] Retana-Ugalde R., Casanueva E., Altamirano-Lozano M., Gonzalez-Torres C., Mendoza-Nunez V.M., High dosage of ascorbic acid and alphatocopherol is not useful for diminishing oxidative stress and DNA damage in healthy elderly adults, Ann. Nutr. Metab. 2008, 52, 167–173 http://dx.doi.org/10.1159/000129652[WoS][Crossref]
  • [19] Shargorodsky M., Debby O., Matas Z., Zimlichman R., Effect of long-term treatment with antioxidants (vitamin C, vitamin E, coenzyme Q10 and selenium) on arterial compliance, humoral factors and inflammatory markers in patients with multiple cardiovascular risk factors, Nutr. Metab. (Lond) 2010, 7, 55 http://dx.doi.org/10.1186/1743-7075-7-55[Crossref][WoS]
  • [20] Salonen J.T., Nyyssonen K., Salonen R., Lakka H.M., Kaikkonen J., Porkkala-Sarataho E., et al., Antioxidant Supplementation in Atherosclerosis Prevention (ASAP) study: a randomized trial of the effect of vitamins E and C on 3-year progression of carotid atherosclerosis, J. Intern. Med. 2000, 248, 377–386 http://dx.doi.org/10.1046/j.1365-2796.2000.00752.x[Crossref]
  • [21] Lapointe A., Couillard C., Lemieux S., Effects of dietary factors on oxidation of low-density lipoprotein particles, J. Nutr. Biochem. 2006, 17, 645–658 http://dx.doi.org/10.1016/j.jnutbio.2006.01.001[Crossref]
  • [22] Hercberg S., Kesse-Guyot E., Druesne-Pecollo N., Touvier M., Favier A., Latino-Martel P., et al., Incidence of cancers, ischemic cardiovascular diseases and mortality during 5-year follow-up after stopping antioxidant vitamins and minerals supplements: a postintervention follow-up in the SU.VI. MAX Study, Int. J. Cancer 2010, 127, 1875–1881 http://dx.doi.org/10.1002/ijc.25201[WoS]
  • [23] Omar B.A., McCord J.M., The cardioprotective effect of Mn-superoxide dismutase is lost at high doses in the postischemic isolated rabbit heart, Free Radic. Biol. Med. 1990, 9, 473–478 http://dx.doi.org/10.1016/0891-5849(90)90124-2[Crossref]
  • [24] Rosen D.R., Siddique T., Patterson D., Figlewicz D.A., Sapp P., Hentati A., et al., Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis, Nature 1993, 362, 59–62 http://dx.doi.org/10.1038/362059a0[Crossref]
  • [25] Amstad P., Peskin A., Shah G., Mirault M.E., Moret R., Zbinden I., et al., The balance between Cu,Znsuperoxide dismutase and catalase affects the sensitivity of mouse epidermal cells to oxidative stress, Biochemistry 1991, 30, 9305–9313 http://dx.doi.org/10.1021/bi00102a024[Crossref]
  • [26] Amstad P., Moret R., Cerutti P., Glutathione peroxidase compensates for the hypersensitivity of Cu,Zn-superoxide dismutase overproducers to oxidant stress, J. Biol. Chem. 1994, 269, 1606–1609
  • [27] Park E.M., Ramnath N., Yang G.Y., Ahn J.Y., Park Y., Lee T.Y., et al., High superoxide dismutase and low glutathione peroxidase activities in red blood cells predict susceptibility of lung cancer patients to radiation pneumonitis, Free Radic. Biol. Med. 2007, 42, 280–287 http://dx.doi.org/10.1016/j.freeradbiomed.2006.10.044[WoS][Crossref]
  • [28] Nakhostin-Roohi B., Barmaki S., Khoshkhahesh F., Bohlooli S., Effect of chronic supplementation with methylsulfonylmethane on oxidative stress following acute exercise in untrained healthy men, J. Pharm. Pharmacol. 2011, 63, 1290–1294 http://dx.doi.org/10.1111/j.2042-7158.2011.01314.x[Crossref][WoS]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11536-013-0173-6
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.