Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2011 | 6 | 2 | 137-147

Article title

RNA interference and its therapeutic potential

Content

Title variants

Languages of publication

EN

Abstracts

EN
RNA interference is a technique that has become popular in the past few years. This is a biological method to detect the activity of a specific gene within a cell. RNAi is the introduction of homologous double stranded RNA to specifically target a gene’s product resulting in null or hypomorphic phenotypes. This technique involves the degradation of specific mRNA by using small interfering RNA. Both microRNA (miRNA) and small interfering RNA (siRNA) are directly related to RNA interference. RNAi mechanism is being explored as a new technique for suppressing gene expression. It is an important issue in the treatment of various diseases. This review considers different aspects of RNAi technique including its history of discovery, molecular mechanism, gene expression study, advantages of this technique against previously used techniques, barrier associated with this technique, and its therapeutic application.

Keywords

Publisher

Journal

Year

Volume

6

Issue

2

Pages

137-147

Physical description

Dates

published
1 - 4 - 2011
online
17 - 2 - 2011

Contributors

  • Institute of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, 2200, Denmark
author
  • School of Biological Sciences, Flinders University, Flinders, SA, 5042, Australia
author
  • System Biology Research Center, School of Life Sciences, University of Skövde, Box 408, SE-541 28, Skövde, Sweden

References

  • [1] Alkhalil A., Strand S., Mucker E., Huggins J.W., Jahrling P.B., Ibrahim S.M., et al., Inhibition of Monkeypox virus replication by RNA interference. Virology Journal, 2009, 6:188, doi: 10.1186/1743-422X-6-188 http://dx.doi.org/10.1186/1743-422X-6-188[Crossref]
  • [2] Anderson J., Akkina R., et al., HIV-1 resistance conferred by siRNA cosuppression of CXCR4 and CCR5 coreceptors by a bispecific lentiviral vector. AIDS Research and Therapy, 2005, 13:2(1), 1 http://dx.doi.org/10.1186/1742-6405-2-1[Crossref]
  • [3] Aravin A.A., Sachidanandam R., Girard A., Fejes-Toth K., Hannon G.J., et al., Developmentally Regulated piRNA Clusters Implicate MILI in Transposon Control. Science, 2007, 316(5825), 744–747 http://dx.doi.org/10.1126/science.1142612[Crossref]
  • [4] Aza-Blanc P., Cooper C.L., Wagner K., Batalov S., Deveraux Q.L., Cooke M.P., et al., Identification of modulators of TRAIL-induced apoptosis via RNAibased phenotypic screening. Mol Cell., 2003, 12, 627–637 http://dx.doi.org/10.1016/S1097-2765(03)00348-4[Crossref]
  • [5] Bartel D.P., MicroRNAs: target recognition and regulatory functions. Cell, 2009, 136(2), 215–233 http://dx.doi.org/10.1016/j.cell.2009.01.002[Crossref]
  • [6] Beal J., Silence is golden:can RNA interference therapeutics deliver? Business trends, 2005, 10, 3
  • [7] Bellemin A., Bonnet M.E., Creusat G., Erbacher P., Behr J.P., et al., Sticky overhangs enhance siRNAmediated gene silencing. PNAS, 2007, 104(41), 16050–16055 http://dx.doi.org/10.1073/pnas.0707831104[Crossref]
  • [8] Berns K., Hijmans E.M., Mullenders J., Brummelkamp T.R., Velds A., Heinerikx M., et al., A large-scale RNAi screen in human cells identifies new components of the p53 pathways. Nature, 2004, 428, 431–437 http://dx.doi.org/10.1038/nature02371[Crossref]
  • [9] Bertrand J., Pottier M., Vekris A., Opolon P., Maksimenko A., Malvy C., et al., Comparison of antisense oligonucleotides and siRNAs in cell culture and in vivo. Biochem Biophys Res Commun., 2002, 296(4), 1000–1004 http://dx.doi.org/10.1016/S0006-291X(02)02013-2[Crossref]
  • [10] Brummelkamp T.R., Nijman S.M., Dirac A.M., Bernards R., et al., Loss of the cylindromatosis tumour suppressor inhibits apoptosis by activating NF-kappaB. Nature, 2003, 424, 797–801 http://dx.doi.org/10.1038/nature01811[Crossref]
  • [11] Brummelkamp T., Bernards R., Agami R., et al., Stable suppression of tumorigenicity by virusmediated RNA interference. Cancer Cel, 2002, 2(3), 243 http://dx.doi.org/10.1016/S1535-6108(02)00122-8[Crossref]
  • [12] Carthew R., RNA interference: the fragile X syndrome connection. Curr. Biol., 2002, 12(24), 852–854 http://dx.doi.org/10.1016/S0960-9822(02)01352-0[Crossref]
  • [13] Chen M., Du Q., Zhang H., Wahlestedt C., Liang Z., et al., Vector-based siRNA delivery strategies for high-throughput screening of novel target genes. Journal of RNAi and Gene Silencing, 2005, 1(1), 5–11
  • [14] Chhabra M., Mittal V., Bhattacharya D., Rana U., Lal S., et al., Chikungunya fever: A re-emerging viral infection. Indian J. Med. Microbiol., 2008, 26(1), 5–12 http://dx.doi.org/10.4103/0255-0857.38850[Crossref]
  • [15] Clayton J., RNA interference: the silent treatment. Nature, 2004, 431(7008), 599–605 http://dx.doi.org/10.1038/431599a[Crossref]
  • [16] Czauderna F., Fechtner M., Dames S., Aygun H., Klippel A., Pronk G., Giese K., Kaufmann J., et al., Structural variations and stabilising modifications of synthetic siRNAs in mammalian cells. Nucleic Acids Res., 2003, 31(11), 2705–2716 http://dx.doi.org/10.1093/nar/gkg393[Crossref]
  • [17] Dasha P.K., Tiwaria M., Santhosha S.R., Paridaa M., Rao P.V.L., et al., RNA interference mediated inhibition of Chikungunya virus replication in mammalian cells. Biochemical and Biophysical Research Communications, 2008, 376(4), 718–722 http://dx.doi.org/10.1016/j.bbrc.2008.09.040[Crossref]
  • [18] De Clercq E., Acyclic nucleoside phosphonates: past, present and future. Bridging chemistry to HIV, HBV, HCV, HPV, adeno-, herpes-, and poxvirus infections: the phosphonate bridge. Biochem Pharmacology, 2007, 73, 911–922 http://dx.doi.org/10.1016/j.bcp.2006.09.014[Crossref]
  • [19] DeVincenzo J., Lambkin-Williams R., Wilkinson T., Cehelsky J., Nochur S., Walsh E., Meyers R., Gollob J., Vaishnaw A., et al., A randomized, double-blind, placebo-controlled study of an RNAi-based therapy directed against respiratory syncytial virus. PNAS, 2010, 107(19), 8800–8805 http://dx.doi.org/10.1073/pnas.0912186107[Crossref]
  • [20] Downward J. RNA interference. BMJ, 2004, 328, 1245–1248 http://dx.doi.org/10.1136/bmj.328.7450.1245[Crossref]
  • [21] Elbashir S.M., Harborth J., Lendeckel W., Yalcin A., Weber K., Tuschl T., et al., Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature, 2001, 411, 494–498 http://dx.doi.org/10.1038/35078107[Crossref]
  • [22] Fire A., Xu S., Montgomery M.K., Kostas S.A., Driver S.E., Mello, C.C., et al., Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 1998, 391, 806–811 http://dx.doi.org/10.1038/35888[Crossref]
  • [23] Fowler T., Bamberg S., Möller P., Klenk H., Meyer T.F., Becker S., Rudel T., et al., Inhibition of Marburg virus protein expression and viral release by RNA interference. J. Gen. Virol., 2005, 86, 1181–1188 http://dx.doi.org/10.1099/vir.0.80622-0[Crossref]
  • [24] Fuchs U., Damm-Welk C., Borkhardt A., et al., Silencing of disease-related genes by small interfering RNAs. Curr. Mol. Med. 2004, 4(5), 507–517 http://dx.doi.org/10.2174/1566524043360492[Crossref]
  • [25] Fumitaka T., Takahiro O., et al., Therapeutic potential of RNA interference against cancer. Cancer Science, 2006, 97(8), 689–696 http://dx.doi.org/10.1111/j.1349-7006.2006.00234.x[Crossref]
  • [26] Futami T., Miyagishi M., Seki M., Taira K. Indu, et al., ction of apoptosis in HeLa cells with siRNA expression vector targeted against bcl-2. Nucleic Acids Res. Suppl., 2002, (2), 251–252 [Crossref]
  • [27] Gao Y., Yu L., Wei W., Li J., Luo Q., Shen J., et al., Inhibition of hepatitis B virus gene expression and replication by artificial microRNA. World Journal of Gastroenterology, 2008, 14(29), 4684–4689 http://dx.doi.org/10.3748/wjg.14.4684[Crossref]
  • [28] Genc S., Tolga F.K., Genc K., et al., RNA interference in neuroscience. Science Direct, 2004, 132(2), 260–270
  • [29] Gong H., Liu C., Liu D., Liang C., et al., The role of small RNAs in human diseases: potential troublemaker and therapeutic tools. Med. Res. Rev., 2005, 25(3), 361–381 http://dx.doi.org/10.1002/med.20023[Crossref]
  • [30] Guo S., Kemphues K.J., et al., par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell, 1995, 81, 611–620 http://dx.doi.org/10.1016/0092-8674(95)90082-9[Crossref]
  • [31] Großhans H., Filipowicz W., et al., The expanding world of small RNAs. Nature, 2008, 451, 414–416 http://dx.doi.org/10.1038/451414a[Crossref]
  • [32] Guru T., A silence that speaks volumes. Nature, 2000, 404, 804–808 http://dx.doi.org/10.1038/35009245[Crossref]
  • [33] Hammond S.M., Boettcher S., Caudy A.A., Kobayashi R., Hannon G.J., et al., Argonaute2, a link between genetic and biochemical analyses of RNAi. Science, 2001, 293(5532), 1146–1150 http://dx.doi.org/10.1126/science.1064023[Crossref]
  • [34] Thomson J., Hemann M., Hernando-Monge E., Mu D., Goodson S., Powers S., Cordon-Cardo C., Lowe S., Hannon G., Hammond S., et al., A microRNA polycistron as a potential human oncogene. Nature, 2005, 435(7043), 828–833 http://dx.doi.org/10.1038/nature03552[Crossref]
  • [35] Heidel J., Hu S., Liu X., Triche T., Davis M., et al., Lack of interferon response in animals to naked siRNAs. Nat. Biotechnol., 2005, 22(12), 1579–1582 http://dx.doi.org/10.1038/nbt1038[Crossref]
  • [36] Holen T., Amarzguioui M., Wiiger M.T., Babaie E., Prydz H., et al., Positional effects of short interfering RNAs targeting the human coagulation trigger tissue factor. Nucleic Acids Res., 2002, 30(8), 1757–1766 http://dx.doi.org/10.1093/nar/30.8.1757[Crossref]
  • [37] Hutvagner G., Zamore P., et al., A microRNA in a multiple-turnover RNAi enzyme complex. Science, 2002, 297(5589), 2056–2060 http://dx.doi.org/10.1126/science.1073827[Crossref]
  • [38] Jackson A., Bartz S., Schelter J., Kobayashi S., Burchard J., Mao M., Li B., Cavet G., Linsley P., et al., Expression profiling reveals off-target gene regulation by RNAi. Nat. Biotechnol., 2003, 21(6), 635–637 http://dx.doi.org/10.1038/nbt831[Crossref]
  • [39] Kapadia S.B., Brideau-Andersen A., Chisari F.V., et al., Interference of hepatitis C virus RNA replication by short interfering RNAs. PNAS, 2008, 100(4), 2014–2018 http://dx.doi.org/10.1073/pnas.252783999[Crossref]
  • [40] Kariko K., Bhuyan P., Capodici J., Weissman D., et al., Small interfering RNAs mediate sequenceindependent gene suppression and induce immune activation by signaling through toll-like receptor 3. J. Immunol., 2004, 172(11), 6545–6549
  • [41] Kim S., Peer D., Kumar P., Subramanya S., Wu H., Asthana D., Habiro K., Yang Y., Manjunath N., Shimaoka M., Shankar P., et al., RNAi-mediated CCR5 Silencing by LFA-1-targeted Nanoparticles Prevents HIV Infection in BLT Mice. Molecular Therapy, 2010, 18(2), 370–376 http://dx.doi.org/10.1038/mt.2009.271
  • [42] Kumar P., Ban H.S., Kim S.S., Wu H., Pearson T., Greiner D.L., Laouar A., Manjunath N., Shultz L.D., Lee S.K., Shankar P., et al., T Cell-Specific siRNA Delivery Suppresses HIV-1 Infection in Humanized Mice. Cell, 2008, 134, 577–586 http://dx.doi.org/10.1016/j.cell.2008.06.034[Crossref]
  • [43] Lee M.M., Coburn G., McClure M.O., Cullen B.R., et al., Inhibition of human immunodeficiency virus type 1 replication in primary macrophages by using tat- or CCR5-specific small interfering RNAs expressed from a lentivirus vector. J. Virol., 2003, 77, 11964–11972 http://dx.doi.org/10.1128/JVI.77.22.11964-11972.2003[Crossref]
  • [44] Liu YP, Gruber J, Haasnoot J, Konstantinova P., Berkhout B., et al., RNAi-mediated inhibition of HIV-1 by targeting partially complementary viral sequences. Nucl. Acids Res. 2009, doi: 10.1093/nar/gkp644 [Crossref]
  • [45] Ma Z., Li J., He F., Wilson A., Pitt B., Li S., et al., Cationic lipids enhance siRNA-mediated interferon response in mice. Biochem. Biophys. Res. Commun., 2005, 330(3), 755–759 http://dx.doi.org/10.1016/j.bbrc.2005.03.041[Crossref]
  • [46] Matranga C., Tomari Y., Shin C., Bartel D.P., Zamore P.D., et al., Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. Cell, 2005, 123, 607–620 http://dx.doi.org/10.1016/j.cell.2005.08.044[Crossref]
  • [47] Martinez L., Naguibneva I., Lehrmann H., Vervisch A., Tchenio T., Lozano G., Harel-Bellan A., et al., Synthetic small inhibiting RNAs: efficient tools to inactivate oncogenic mutations and restore p53 pathways. Proc. Natl. Acad. Sci. 2002, USA 99(23), 14849–14854 http://dx.doi.org/10.1073/pnas.222406899[Crossref]
  • [48] Matthew L., RNAi for plant functional genomics. Comp Func. Genom., 2004, 5, 240–244 http://dx.doi.org/10.1002/cfg.396[Crossref]
  • [49] McCaffrey A.P., Meuse L., Pham T.T., Conklin D.S., Hannon G.J., Kay M.A., et al., RNA interference in adult mice. Nature, 2002, 418, 38–39 http://dx.doi.org/10.1038/418038a[Crossref]
  • [50] McCaffrey A.P., Nakai H., Pandey K., Huang Z., Salazar F.H., Xu H., Wieland S.F., Marion P.L., Kay M.A., et al., Inhibition of hepatitis B virus in mice by RNA interference. Nature Biotechnology, 2003, 21, 639–644 http://dx.doi.org/10.1038/nbt824[Crossref]
  • [51] Miller V., Xia H., Marrs G., Gouvion C., Lee G., Davidson B., Paulson H., et al., Allele-specific silencing of dominant disease genes. Proc. Natl. Acad. Sci., 2003, 100(12), 7195–7200 http://dx.doi.org/10.1073/pnas.1231012100[Crossref]
  • [52] Morrissey D., Blanchard K., Shaw L., Jensen K., Lockridge J., Dickinson B., McSwiggen J., Vargeese C., Bowman K., Shaffer C., Polisky B., Zinnen S., et al., Activity of stabilized short interfering RNA in a mouse model of hepatitis B virus replication. Hepatology, 2005, 41(6), 1349–1356 http://dx.doi.org/10.1002/hep.20702[Crossref]
  • [53] Napoli C., Lemieux C., Jorgensen R., et al., Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell, 1990, 2, 279–289 http://dx.doi.org/10.1105/tpc.2.4.279[Crossref]
  • [54] Novina C.D., Murray M.F., Dykxhoorn D.M., Beresford P.J., Riess J., Lee S.K., Collman R.G., Lieberman J., Shankar P., Sharp P.A., et al., siRNAdirected inhibition of HIV-1 infection. Nat. Med., 2002, 8(7), 681–686
  • [55] Peyman A., Helsberg M., Kretzschmar G., Mag M., Grabley S., Uhlmann E., et al., Inhibition of viral growth by antisense oligonucleotides directed against the IE110 and the UL30 mRNA of herpes simplex virus type-1. Biol. Chem. Hoppe Seyler. 1995, 376(3), 195–198
  • [56] Qiuwei P., Rong C., Xinyuan L., Cheng Q., et al., A novel strategy for cancer gene therapy: RNAi. Chinese Science Bulletin, 2006, 51(10), 1145–1151 http://dx.doi.org/10.1007/s11434-006-1145-x[Crossref]
  • [57] Robert W., Williamsand, M.R., et al., Argonaute1 is required for efficient RNA interference in Drosophila embryos. Proc. Natl. Acad. Sci., 2002, 99(10), 6889–6894 http://dx.doi.org/10.1073/pnas.072190799[Crossref]
  • [58] Romano N., Macino G., et al., Quelling: transient inactivation of gene expression in Neurospora crassa by transformation with homologous sequences. Mol. Microbiol., 1992, 6, 3343–3353 http://dx.doi.org/10.1111/j.1365-2958.1992.tb02202.x[Crossref]
  • [59] Sen G.L., Blau H.M., et al., A brief history of RNAi: the silence of the genes. The FASEB Journal, 2006, 20, 1293–1299 http://dx.doi.org/10.1096/fj.06-6014rev[Crossref]
  • [60] Scherer L., Rossi J., et al., Approaches for the sequence-specific knockdown of mRNA. Nat. Biotechnol., 2003, 21(12), 1457–1465 http://dx.doi.org/10.1038/nbt915[Crossref]
  • [61] Schubert S., Grunweller A., Erdmann V., Kurreck J., et al., Local RNA target structure influences siRNA efficacy: systematic analysis of intentionally designed binding regions. J. Mol. Biol., 2005, 348(4), 883–893 http://dx.doi.org/10.1016/j.jmb.2005.03.011[Crossref]
  • [62] Shankar P., Song E., Lee S.K., Dykxhoom D.M., Novina C., Crawford K., Cerny J., Sharp P.A., Lieberman J., Swamy M.N., et al., Sustained siRNAmediated HIV Inhibition in Primary Macrophages. Abstr. 10th Conf. Retrovir. Oppor. Infect., 2003, 225
  • [63] Slimane R.H., Lepelletier Y., Lopez N., Garbay C., Raynaud F., et al., Short interfering RNA (siRNA), a novel therapeutic tool acting on angiogenesis. Science Direct, 2007, 89(10), 1234–1244
  • [64] Soutschek J., Akinc A., Bramlage B., Charisse K., Constien R., Donoghue M., Elbashir S., Geick A., Hadwiger P., Harborth J., John M., Kesavan M., Lavine G., Pandey R., Racie T., Rajeev K., Rohl I., Toudjarska I., Wang G., Wuschko S., Bumcrot D., Koteliansky V., Limmer S., Manoharan M., Vornlocher H., et al., Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature, 2004, 432(7014), 173–178 http://dx.doi.org/10.1038/nature03121[Crossref]
  • [65] Susan L.U., The therapeutic potential of RNA interference. FEBS Letters, 2005, 579, 5996–6007 http://dx.doi.org/10.1016/j.febslet.2005.08.004[Crossref]
  • [66] Tewari M., Vidal M., et al., RNAi on the apoptosis TRAIL: the mammalian cell genetic screen comes of age. Dev. Cell., 2003, 5, 534–535 http://dx.doi.org/10.1016/S1534-5807(03)00303-4[Crossref]
  • [67] Tomanin R., Scarpa M., et al., Why do we need new gene therapy viral vectors? Characteristics, limitations and future perspectives of viral vector transduction. Curr. Gene Ther., 2004, 4(4), 357–372 [Crossref]
  • [68] Wilda M., Fuchs U., Wossmann W., Borkhardt A., et al., Killing of leukemic cells with a BCR/ABL fusion gene by RNA interference (RNAi). Oncogene, 2002, 21(37), 5716–5724 http://dx.doi.org/10.1038/sj.onc.1205653[Crossref]
  • [69] Williams M., Clark G., Sathasivan K., Islam A.S., et al., RNA Interference and its Application in Crop Improvement. Plant tissue culture and Biotechnology, 2004, 1, 18
  • [70] Wilson J.A., Richardson C.D., et al., Hepatitis C Virus Replicons Escape RNA Interference Induced by a Short Interfering RNA Directed against the NS5b Coding Region. Journal of Virology, 2005, 79(11), 7050–7058 http://dx.doi.org/10.1128/JVI.79.11.7050-7058.2005[Crossref]
  • [71] Xia H., Mao Q., Paulson H.L., Davidson B.L., et al., siRNA-mediated gene silencing in vitro and in vivo. Nat. Biotechnol., 2002, 20, 1006–1010 http://dx.doi.org/10.1038/nbt739[Crossref]
  • [72] Xu Y., Zhang H., Thormeyer D., Larsson O., Du Q., Elmen J., Wahlestedt C., Liang Z., et al., Effective small interfering RNAs and phosphorothioate antisense DNAs have different preferences for target sites in the luciferase mRNAs. Biochem. Biophy. Res. Commun., 2003, 306(3), 712–717 http://dx.doi.org/10.1016/S0006-291X(03)01024-6[Crossref]
  • [73] Yang G., Thompson J., Fang B., Liu J., et al., Silencing of H-ras gene expression by retrovirusmediated siRNA decreases transformation efficiency and tumor growth in a model of human ovarian cancer. Oncogene, 2003, 22(36), 5694–5701 http://dx.doi.org/10.1038/sj.onc.1206858[Crossref]
  • [74] Zentilin L., Giacca M., et al., In vivo transfer and expression of genes coding for short interfering RNAs. Curr. Pharm. Biotechnol., 2004, 5(4), 341–347 http://dx.doi.org/10.2174/1389201043376742[Crossref]
  • [75] Zhang W., Sumita B., Rajeswari S., Lockey R.F., Mohapatra S.S., et al., Inhibition of respiratory syncytial virus infection with intranasal siRNA nanoparticles targeting the viral NS1 gene. Nature Medicine, 2005, 11(1), 56–62 http://dx.doi.org/10.1038/nm1174[Crossref]
  • [76] Ryan K.J., Ray C.G. Sherris Medical Microbiology, (4th ed.), McGraw Hill. pp. 624–628. ISBN 0-8385-8529-9, 2004
  • [77] Pfeifer A., Eigenbrod S., Al-Khadra S., Hofmann A., Mitteregger G., Moser M., Bertsch U., Kretzschmar H. Lentivector-mediated RNAi efficiently suppresses prion protein and prolongs survival of scrapie-infected mice. J. Clin. Invest., 2006, 116, 3204–3210 http://dx.doi.org/10.1172/JCI29236[Crossref]
  • [78] White M.D., Farmer M., Mirabile I., Brandner S., Collinge J., Mallucci G.R. Single treatment with RNAi against prion protein rescues early neuronal dysfunction and prolongs survival in mice with prion disease. PNAS, 2008, 105(29), 10238–10243 http://dx.doi.org/10.1073/pnas.0802759105[Crossref]
  • [79] Geng Y.J., Libby P. Progression of atheroma: a struggle between death and procreation. Arterioscler Thromb Vasc Biol., 2002, 22, 1370–1380 http://dx.doi.org/10.1161/01.ATV.0000031341.84618.A4[Crossref]
  • [80] Frank-Kamenetsky M., Grefhorst A., Anderson N.N., Racie T.S., Bramlage B., Akinc A., Butler D., Charisse K., Dorkin R., Fan Y. Therapeutic RNAi targeting PCSK9 acutely lowers plasma cholesterol in rodents and LDL cholesterol in nonhuman primates. Proc. Natl. Acad. Sci. USA., 2008, 105, 11915–11920 http://dx.doi.org/10.1073/pnas.0805434105[Crossref]
  • [81] Ukomadu C., Dutta A. Inhibition of cdk2 activating phosphorylation by mevastatin. J Biol Chem., 2003, 278, 4840–4846 http://dx.doi.org/10.1074/jbc.M208658200[Crossref]
  • [82] Barth J., Volknandt W. Evaluation of small hairpin RNA silencing efficiency in live cells by cotransfection of two fluorescent probes. Anal Biochem., 2008, 379(1), 133–135 http://dx.doi.org/10.1016/j.ab.2008.04.009[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11536-011-0005-5
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.