Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2008 | 3 | 1 | 47-53

Article title

Comparative X-Ray study of galantamine and tacrine on the evacuatory function of rat gastrointestinal tract

Content

Title variants

Languages of publication

EN

Abstracts

EN
A The acetylcholinesterase inhibitors galantamine and tacrine are used to treat Alzheimer’s disease. However, these compounds also affect the gastrointestinal (GI) tract. Here, we compared and analyzed both the effects of galantamine-and tacrine on the evacuatory kinetics of the GI tract in rats. Rats were untreated (n=15) or treated with galantamine (one daily dose of 1 mg/kg per os for 21 days; n=17) or tacrine (one daily dose of 0.5 mg/kg per os for 21 days; n=13) and evacuatory kinetics were assessed using radiological methods. Galantamine initially slowed and then accelerated evacuation, which is characteristic of the majority of cholinesterase inhibitors and is a result of the endogenous acetylcholine accumulated in the GI tissues. In the tacrine-treated rats the contrast medium was kept in the stomach and cecum and its evacuation time was reliably increased. These results indicate that when administered for 20 days, galantamine and tacrine have different effects on motor and evacuatory function in the GI tract of rats, because at certain levels of the tract the tacrine-action is dominated by specific non-cholinergic and non-anticholinesterase mechanisms.

Publisher

Journal

Year

Volume

3

Issue

1

Pages

47-53

Physical description

Dates

published
1 - 3 - 2008
online
1 - 3 - 2008

Contributors

  • Department of Biophysics, Medical University of Plovdiv, Bulgaria
  • Department of Image Diagnostic, Radiology and Nuclear Medicine, Medical University of Plovdiv, Bulgaria
  • Department of Biophysics, Medical University of Plovdiv, Bulgaria
  • Department of Pharmacology, Clinical Pharmacology and Drug Toxicology, Medical University of Plovdiv, Bulgaria
  • Department of Image Diagnostic, Radiology and Nuclear Medicine, Medical University of Plovdiv, Bulgaria

References

  • [1] Rakonczay Z., Potencies and selectivity of inhibitors of acetylcholinesterase and its molecular forms in normal and Alzheimer’s disease brain, Acta Biol. Hung., 2003, 54, 183–189 http://dx.doi.org/10.1556/ABiol.54.2003.2.7[Crossref]
  • [2] Wong W.J., Liu C.H., Fuh J.L., Wang S.J., Hsu L.C., Wang P.N., et al., Double-blind, placebo-controlled study of tacrine in Chinese patients with Alzheimer’s disease, Dement. Geriatr. Cogn. Disord., 1999, 10, 289–294 http://dx.doi.org/10.1159/000017134[Crossref]
  • [3] Scott L.J., Goa K.L., Galantamine: a review of its use in Alzheimer’s disease, Drugs, 2000, 60, 1095–1122 http://dx.doi.org/10.2165/00003495-200060050-00008[Crossref]
  • [4] Corey-Bloom J., Galantamine: a review of its use in Alzheimer’s disease and vascular dementia, Int. J. Clin. Pract., 2003, 57, 219–223
  • [5] Raskind M.A., Sadowsky C.H., Sigmund W.R., Beitler P.J., Auster S.B., Effect of tacrine on language, praxis, and noncognitive behavioral problems in Alzheimer disease, Arch. Neurol., 1997, 54, 836–840 [PubMed][Crossref]
  • [6] Zarotsky V., Sramek J.J., Cutler N.R., Galantamine hydrobromide: an agent for Alzheimer’s disease, Am. J. Health. Syst. Pharm., 2003, 60, 446–452
  • [7] Maelicke A., Allosteric modulation of nicotinic receptors as a treatment strategy for Alzheimer’s disease, Dement. Geriatr. Cogn. Disord., 2000, 11, 11–18 http://dx.doi.org/10.1159/000051227[Crossref]
  • [8] Darvesh S., Walsh R., Kumar R., Caines A., Roberts S., Magee D., et al., Inhibition of Human Cholinesterases by Drugs Used to Treat Alzheimer Disease, Alzheimer Dis. Assoc. Disord., 2003, 17, 117–126 http://dx.doi.org/10.1097/00002093-200304000-00011[Crossref]
  • [9] Stemmelin J., Cassel J., Will J.C., Kelche B.C., Sensitivity to cholinergic drug treatments of aged rats with variable degrees of spatial memory impairment, Behav. Brain Res., 1999, 98, 53–66 http://dx.doi.org/10.1016/S0166-4328(98)00052-7[Crossref]
  • [10] Ventura M., Sternon J., Therapeutic results: tacrine, Rev. Med. Brux., 1997, 18, 394–397
  • [11] Hunter A., Murray T., Jones J., Cross A., Green A., The cholinergic pharmacology of tetrahydroaminoacridine in vivo and in vitro, Br. J. Pharmacol., 1989, 98, 79–86 [Crossref]
  • [12] Snape F., Misra A., Murray T., De Souza R., Williams J., Cross A., et al., A comparative study in rats of the in vitro and in vivo pharmacology of the acetylcholinesterase inhibitors tacrine, donepezil and NXX-066, Neuropharmacol., 1999, 38, 181–193 http://dx.doi.org/10.1016/S0028-3908(98)00164-6[Crossref]
  • [13] Flynn D., Mash D., Multiple in vitro interactions with and differential in vivo regulation of muscarinic receptor subtypes by tetrahydroaminoacridine, J. Pharmacol. Exp. Ther., 1989, 250, 573–581
  • [14] Summers W., Majovski L., Marsh G., Tachiki K., Kling A., Oral tetrahydro-aminoacridine in long-term treatment of senile dementia, Alzheimer type, N. Engl. J. Med., 1986, 315, 1241–1245 http://dx.doi.org/10.1056/NEJM198611133152001[Crossref]
  • [15] Dolezal V., Lisa V., Tucek S., Effect of tacrine on intracellular calcium in cholinergic SN56 neuronal cells, Brain Res., 1997, 769, 219–224 http://dx.doi.org/10.1016/S0006-8993(97)00711-7[Crossref]
  • [16] Davis U.L., Powchik P., Tacrine, Lancet, 1995, 345, 625–630 http://dx.doi.org/10.1016/S0140-6736(95)90526-X[Crossref]
  • [17] Nordberg A., Svensson A.L., Cholinesterase inhibitors in the treatment of Alzheimer’s disease: a comparison of tolerability and pharmacology, Drug Safety., 1999, 20, 146
  • [18] Sramek J.J., Frackiewicz E.J., Cutler N.R., Review of acetylcholinesterase inhibitor galantamine, Exp. Opin. Invest. Drugs, 2000, 9, 2393–2402 http://dx.doi.org/10.1517/13543784.9.10.2393[Crossref]
  • [19] Poirier J., Evidence that the clinical effects of cholinesterase inhibitors are related to potency and targeting of action, Int. J. Clin. Pract. 2002, 127, 6–19
  • [20] Fulton B., Benfield P., Galanthamine, Drugs Aging., 1996, 9, 60–67 http://dx.doi.org/10.2165/00002512-199609010-00006[Crossref]
  • [21] Cummings J.L., Use of cholinesterase inhibitors in clinical practice: evidence-based recommendations, Am. J. Geriatr. Psych., 2003, 11, 131–145 http://dx.doi.org/10.1176/appi.ajgp.11.2.131[Crossref]
  • [22] Gerthoffer W.T., Signal-transduction pathways that regulate visceral smooth muscle function. III. Coupling of muscarinic receptors to signaling kinases and effector proteins in gastrointestinal smooth muscles, Am. J. Physiol. Gastrointest. Liver Physiol., 2005, 288, G849–G853 http://dx.doi.org/10.1152/ajpgi.00530.2004[Crossref]
  • [23] Turiiski V.I., Krustev A.D., Sirakov V.N., Getova D.P., In vivo and in vitro study of the influence of the anticholinesterase drug galantamine on motor and evacuative functions of rat gastrointestinal tract, Eur. J. Pharmacol., 2004, 498, 233–239 http://dx.doi.org/10.1016/j.ejphar.2004.07.054[Crossref]
  • [24] Barnes C.A., Meltzer J., Houston F., Orr G., McGann K., Wenk G.L., Chronic treatment of old rats with donepezil or galantamine: effects on memory, hippocampal plasticity and nicotinic receptors, Neuroscience, 2000, 99, 17–23 http://dx.doi.org/10.1016/S0306-4522(00)00180-9[Crossref]
  • [25] Maelicke A., Samochocki M., Jostock R., Fehrenbacher A., Ludwig J., Albuquerque E.X., et al., Allosteric sensitization of nicotinic receptors by galantamine, a new treatment strategy for Alzheimer’s disease, Biol. Psych, 2001, 49, 279–288 http://dx.doi.org/10.1016/S0006-3223(00)01109-4[Crossref]
  • [26] Coyle J., Kershaw P., Galantamine, a cholinesterase inhibitor that allosterically modulates nicotinic receptors: effects on the course of Alzheimer’s disease, Biol. Psych., 2001, 49, 289–299 http://dx.doi.org/10.1016/S0006-3223(00)01101-X[Crossref]
  • [27] Vizi E.S., Kobayashi O., Torocsik A., Kinjo M., Nagashima H., Manabe N., et al., Heterogeneity of presynaptic muscarinic receptors involved in modulation of transmitter release, Neuroscience, 1989, 31, 1259–267 http://dx.doi.org/10.1016/0306-4522(89)90048-1[Crossref]
  • [28] Brookes S.J., Neuronal nitric oxide in the gut, J. Gastroenterol. Hepatol., 1993, 8, 590–603 [Crossref]
  • [29] Jeyarasasingam G., Yeluashvili M., Quik M., Tacrine, a reversible acetylcholinesterase inhibitor, induces myopathy, Neuroreport, 2000, 11, 1173–1176 http://dx.doi.org/10.1097/00001756-200004270-00006[Crossref]
  • [30] Kristev A.D., Argirova M.D., Getova D.P., Turiiski V.I., Prissadova N.A., Calcium-independent tacrine-induced relaxation of rat gastric corpus smooth muscles, Can. J. Physiol. Pharmacol., 2006, 84, 1133–1138 http://dx.doi.org/10.1139/Y06-059[Crossref]
  • [31] Turiiski V., Argirova M., Krastev A., Non-anticholinesterase, non-cholinergic effect of tacrine on gastrointestinal smooth muscle tissues of rat, Folia Medica, 2005, 57, 45–51

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11536-007-0061-z
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.