Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2013 | 11 | 11 | 1580-1588

Article title

Lattice model with power-law spatial dispersion for fractional elasticity

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
A lattice model with a spatial dispersion corresponding to a power-law type is suggested. This model serves as a microscopic model for elastic continuum with power-law non-locality. We prove that the continuous limit maps of the equations for the lattice with the power-law spatial dispersion into the continuum equations with fractional generalizations of the Laplacian operators. The suggested continuum equations, which are obtained from the lattice model, are fractional generalizations of the integral and gradient elasticity models. These equations of fractional elasticity are solved for two special static cases: fractional integral elasticity and fractional gradient elasticity.

Publisher

Journal

Year

Volume

11

Issue

11

Pages

1580-1588

Physical description

Dates

published
1 - 11 - 2013
online
10 - 12 - 2013

Contributors

  • Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, 119991, Russia

References

  • [1] B. Ross, Lect. Notes Math. 457, 1 (1975) http://dx.doi.org/10.1007/BFb0067096[Crossref]
  • [2] J. T. Machado, V. Kiryakova, F. Mainardi, Commun. Nonlinear Sci. Num. Simul. 16, 1140 (2011) http://dx.doi.org/10.1016/j.cnsns.2010.05.027[Crossref]
  • [3] S. G. Samko, A. A. Kilbas, O. I. Marichev, Integrals and Derivatives of Fractional Order and Applications (Nauka i Tehnika, Minsk, 1987)
  • [4] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives Theory and Applications (Gordon and Breach, New York, 1993)
  • [5] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations (Elsevier, Amsterdam, 2006)
  • [6] A. Carpinteri, F. Mainardi (Eds.), Fractals and Fractional Calculus in Continuum Mechanics (Springer, New York, 1997)
  • [7] R. Hilfer (Ed.), Applications of Fractional Calculus in Physics (World Scientific, Singapore, 2000)
  • [8] R. Metzler, J. Klafter, Phys. Rep. 339, 1 (2000) http://dx.doi.org/10.1016/S0370-1573(00)00070-3[Crossref]
  • [9] J. Sabatier, O. P. Agrawal, J. A. Tenreiro Machado (Eds.), Advances in Fractional Calculus, Theoretical Developments and Applications in Physics and Engineering (Springer, Dordrecht, 2007)
  • [10] A. C. J. Luo, V. S. Afraimovich (Eds.), Long-range Interaction, Stochasticity and Fractional Dynamics (Springer, Berlin, 2010)
  • [11] F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models (World Scientific, Singapore, 2010) http://dx.doi.org/10.1142/9781848163300[Crossref]
  • [12] J. Klafter, S. C. Lim, R. Metzler (Eds.), Fractional Dynamics, Recent Advances (World Scientific, Singapore, 2011)
  • [13] V. E. Tarasov, Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media (Springer, New York, 2011)
  • [14] J. A. Tenreiro Machado, Commun. Nonlinear Sci. Num. Simul. 16, 4596 (2011) http://dx.doi.org/10.1016/j.cnsns.2011.01.019[Crossref]
  • [15] V. E. Tarasov, Int. J. Mod. Phys. B. 27, 1330005 (2013) http://dx.doi.org/10.1142/S0217979213300053[Crossref]
  • [16] K. A. Lazopoulos, Mech. Res. Commun. 33, 753 (2006) http://dx.doi.org/10.1016/j.mechrescom.2006.05.001[Crossref]
  • [17] A. Carpinteri, P. Cornetti, A. Sapora, App. Math. Mech. 89, 207 (2009)
  • [18] A. Carpinteri, P. Cornetti, A. Sapora, Eur. Phys. J. Special Topics 193, 193 (2011) http://dx.doi.org/10.1140/epjst/e2011-01391-5[Crossref]
  • [19] A. Sapora, P. Cornetti, A. Carpinteri, Commun. Nonlinear Sci. Num. Simul. 18, 63 (2013) http://dx.doi.org/10.1016/j.cnsns.2012.06.017[Crossref]
  • [20] G. Cottone, M. Di Paola, M. Zingales, Physica E. 42, 95 (2009) http://dx.doi.org/10.1016/j.physe.2009.09.006[Crossref]
  • [21] G. Cottone, M. Di Paola, M. Zingales, Adv. Num. Method. Lect. Notes El. Eng. 11, 389 (2009) http://dx.doi.org/10.1007/978-0-387-76483-2_33[Crossref]
  • [22] I. A. Kunin, Media with Microstructure, Vol. I (Springer-Verlag, Berlin, New York, 1982) http://dx.doi.org/10.1007/978-3-642-81748-9[Crossref]
  • [23] I. A. Kunin, Media with Microstructure, Vol.II (Springer-Verlag, Berlin, New York, 1983) http://dx.doi.org/10.1007/978-3-642-81960-5[Crossref]
  • [24] J. A. Krumhansl, In R. F. Wallis (Ed.), Generalized continuum field representation for lattice vibrations, Lattice Dynamics (Pergamon, London, 1965) 627–634
  • [25] A. C. Eringen, B. S. Kim, Crystal Latt. Def. 7, 51 (1977)
  • [26] M. Ostoja-Starzewski, App. Mech. Rev. 55, 35 (2002) http://dx.doi.org/10.1115/1.1432990[Crossref]
  • [27] H. Askes, A. Metrikine, Int. J. Soli. Struct. 42, 187 (2005) http://dx.doi.org/10.1016/j.ijsolstr.2004.04.005[Crossref]
  • [28] M. Charlotte, L. Truskinovsky, J. Mech. Phys. Solids. 60, 1508 (2012) http://dx.doi.org/10.1016/j.jmps.2012.03.004[Crossref]
  • [29] V. E. Tarasov, J. Phys. A. 39, 14895 (2006) http://dx.doi.org/10.1088/0305-4470/39/48/005[Crossref]
  • [30] V. E. Tarasov, J. Math. Phys. 47, 092901 (2006) http://dx.doi.org/10.1063/1.2337852[Crossref]
  • [31] V. E. Tarasov, G. M. Zaslavsky, Chaos. 16, 023110 (2006) http://dx.doi.org/10.1063/1.2197167[Crossref]
  • [32] N. Laskin, G. M. Zaslavsky, Physica A. 368, 38 (2006) http://dx.doi.org/10.1016/j.physa.2006.02.027[Crossref]
  • [33] V. E. Tarasov, G. M. Zaslavsky, Commun. Nonlinear Sci. Num. Simul. 11, 885 (2006) http://dx.doi.org/10.1016/j.cnsns.2006.03.005[Crossref]
  • [34] V. E. Tarasov, J. J. Trujillo, Ann. Phys. 334, 1 (2013) http://dx.doi.org/10.1016/j.aop.2013.03.014[Crossref]
  • [35] G. H. Hardy, J. London Math. Soc. 20, 45 (1945)
  • [36] M. M. Dzherbashyan, A. B. Nersesian, Izv. An. Armyanskoi SSR. Fiz.-Mat. 11, 85 (1958) (in Russian)
  • [37] M. M. Dzherbashyan, A. B. Nersesian, Dokl. Akad. Nauk. 121, 210 (1958) (in Russian)
  • [38] J. J. Trujillo, M. Rivero, B. Bonilla, J. Math. Anal. App. 231, 255 (1999) http://dx.doi.org/10.1006/jmaa.1998.6224[Crossref]
  • [39] Z. M. Odibat, N. T. Shawagfeh, App. Math. Comput. 186, 286 (2007) http://dx.doi.org/10.1016/j.amc.2006.07.102[Crossref]
  • [40] M. Di Paola, M. Zingales, Int. J. Solid. Struct. 45, 5642 (2008) http://dx.doi.org/10.1016/j.ijsolstr.2008.06.004[Crossref]
  • [41] H. Askes, E. C. Aifantis, Int. J. Solid. Struct. 48, 1962 (2011) http://dx.doi.org/10.1016/j.ijsolstr.2011.03.006[Crossref]
  • [42] L. D. Landau, E. M. Lifshitz, Theory of Elasticity, Third Edition (Pergamon Press, Oxford, 1986)
  • [43] H. Bateman, A. Erdelyi, Tables of integral transforms, Volume 1 (New York, McGraw-Hill, 1954) or (Moscow, Nauka, 1969) in Russian
  • [44] A. K. Jonscher, Nature 267, 673 (1977) http://dx.doi.org/10.1038/267673a0[Crossref]
  • [45] A. K. Jonscher, Universal Relaxation Law (Chelsea Dielectrics, London, 1996)
  • [46] A. K. Jonscher, J. Mat. Sci. 34, 3071 (1999) http://dx.doi.org/10.1023/A:1004640730525[Crossref]
  • [47] V. E. Tarasov, J. Phys. Condensed Matter. 20, 175223 (2008) http://dx.doi.org/10.1088/0953-8984/20/17/175223[Crossref]
  • [48] V. E. Tarasov, Jo. Phys. Condensed Matter. 20, 145212 (2008) http://dx.doi.org/10.1088/0953-8984/20/14/145212[Crossref]
  • [49] V. E. Tarasov, Cent. Eur. J. Phys. 10, 382 (2012) http://dx.doi.org/10.2478/s11534-012-0008-0[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11534-013-0308-z
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.