Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2013 | 11 | 12 | 1653-1661

Article title

Quantifying the sorting efficiency of self-propelled run-and-tumble swimmers by geometrical ratchets

Content

Title variants

Languages of publication

EN

Abstracts

EN
Suitable asymmetric microstructures can be used to control the direction of motion in microorganism populations. This rectification process makes it possible to accumulate swimmers in a region of space or to sort different swimmers. Here we study numerically how the separation process depends on the specific motility strategies of the microorganisms involved. Crucial properties such as the separation efficiency and the separation time for two bacterial strains are precisely defined and evaluated. In particular, the sorting of two bacterial populations inoculated in a box consisting of a series of chambers separated by columns of asymmetric obstacles is investigated. We show how the sorting efficiency is enhanced by these obstacles and conclude that this kind of sorting can be efficiently used even when the involved populations differ only in one aspect of their swimming strategy.

Keywords

Publisher

Journal

Year

Volume

11

Issue

12

Pages

1653-1661

Physical description

Dates

published
1 - 12 - 2013
online
20 - 12 - 2013

Contributors

  • Département de Physique, Université de Liège, B-4000, Sart Tilman, Belgium
  • Facultad de Matemática, Astronomía y Física, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Argentina
author

References

  • [1] E. E. Keaveny, S. W. Walker, M. J. Shelley, Nano Lett. 13, 531 (2013) http://dx.doi.org/10.1021/nl3040477[Crossref]
  • [2] G. Mahmud et al., Nature Phys. 5, 606 (2009) http://dx.doi.org/10.1038/nphys1306[Crossref]
  • [3] K. Konstantopoulus, P. Wu, D. Wirtz, Biophys. J. 104, 279 (2013) http://dx.doi.org/10.1016/j.bpj.2012.12.016[Crossref]
  • [4] R. Peng, X. Yao, J. Ding, Biomaterials 32, 8048 (2011) http://dx.doi.org/10.1016/j.biomaterials.2011.07.035[Crossref]
  • [5] P. Galajda, J. Keymer, P. Chaikin, R. Austin, J. Bacteriol. 189, 8704 (2007) http://dx.doi.org/10.1128/JB.01033-07[Crossref]
  • [6] S. Y. Kim et al., J. Micromech. Microeng. 20, 0950061 (2010)
  • [7] J. Elgeti, U. B. Kaupp, G. Gompper, Biophys. J. 99, 1018 (2010) http://dx.doi.org/10.1016/j.bpj.2010.05.015[Crossref]
  • [8] P. Denissenko, V. Kantsler, D. J. Smith, J. Kirkman-Brown, Proc. Natl. Acad. Sci. USA 109, 8007 (2012) http://dx.doi.org/10.1073/pnas.1202934109[Crossref]
  • [9] T. M. Squires, S. R. Quake, Rev. Mod. Phys. 77, 977 (2005) http://dx.doi.org/10.1103/RevModPhys.77.977[Crossref]
  • [10] K. Leung et al., Proc. Natl. Acad. Sci. USA 109, 20 (2012)
  • [11] L. G. Wilson et al., Phys. Rev. Lett. 106, 018101 (2011) http://dx.doi.org/10.1103/PhysRevLett.106.018101[Crossref]
  • [12] E. Altshuler et al., Soft Matter. 9, 1864 (2013) http://dx.doi.org/10.1039/c2sm26460a[Crossref]
  • [13] V. Kantsler, J. Dunkel, M. Polin, R. E. Goldstein, Proc. Natl. Acad. Sci. USA 110, 4 (2013) http://dx.doi.org/10.1073/pnas.1218423110[Crossref]
  • [14] G. Lambert, D. Liao, R. H. Austin, Phys. Rev. Lett. 104, 168102 (2010) http://dx.doi.org/10.1103/PhysRevLett.104.168102[Crossref]
  • [15] J. A. Drocco, C. J. O. Reichhardt, C. Reichhardt, Phys. Rev. E 85, 056102 (2012) http://dx.doi.org/10.1103/PhysRevE.85.056102[Crossref]
  • [16] C. A. Condat, J. Jäckle, S. A. Menchón. Phys. Rev. E 72, 021909, (2005) http://dx.doi.org/10.1103/PhysRevE.72.021909[Crossref]
  • [17] F. Peruani, L. G. Morelli, Phys. Rev. Lett. 99, 010602 (2007) http://dx.doi.org/10.1103/PhysRevLett.99.010602[Crossref]
  • [18] V. Garcia, M. Birbaumer, F Schweitzer, Eur. Phys. J. B 82, 235 (2011) http://dx.doi.org/10.1140/epjb/e2011-20425-2[Crossref]
  • [19] M. E. Di Salvo, C. A. Condat, Phys. Rev. E 86, 061907 (2012) http://dx.doi.org/10.1103/PhysRevE.86.061907[Crossref]
  • [20] G. Grégoire, H. Chaté, Phys. Rev. Lett. 92, 025702 (2004) http://dx.doi.org/10.1103/PhysRevLett.92.025702[Crossref]
  • [21] E. Bertin, M. Droz, G. Grégoire, J. Phys. A 42, 445001 (2009) http://dx.doi.org/10.1088/1751-8113/42/44/445001[Crossref]
  • [22] C. A. Weber et al., Phys. Rev. Lett. 110, 208001 (2013) http://dx.doi.org/10.1103/PhysRevLett.110.208001[Crossref]
  • [23] P. Romanczuk, L. Schimansky-Geier, Phys. Rev. Lett. 106, 230601 (2011) http://dx.doi.org/10.1103/PhysRevLett.106.230601[Crossref]
  • [24] B. S. Cho, T. G. Schuster, X. M. Zhu, D. Chang, G. D. Smith, S. Takayama, Anal. Chem. 75, 4671 (2003)
  • [25] S. E. Hulme et al., Lab on a Chip 8, 1888 (2008) http://dx.doi.org/10.1039/b809892a[Crossref]
  • [26] W. Yang, V. R. Misko, K. Nelissen, M. Kong, F. M. Peeters, Soft Matter 8, 5175 (2012) http://dx.doi.org/10.1039/c2sm07382j[Crossref]
  • [27] L. Bogunovic, R. Eichhorn, J. Regtmeier, D. Anselmetti, P. Reimann, Soft Matter 8, 3900 (2012) http://dx.doi.org/10.1039/c2sm07053g[Crossref]
  • [28] J. Voldman, Nature Phys. 5, 536 (2009) http://dx.doi.org/10.1038/nphys1349[Crossref]
  • [29] H. C. Berg, Random Walks in Biology (Princeton University Press, Princeton, New Jersey, 1993)
  • [30] H. C. Berg, E. coli in motion (Springer, New York, 2004)
  • [31] H. C. Berg, D. A. Brown, Nature 239, 500 (1972) http://dx.doi.org/10.1038/239500a0[Crossref]
  • [32] G. M. Barbara, J. G. Mitchell, FEMS Microbiol. Ecol. 44, 79 (2003) http://dx.doi.org/10.1111/j.1574-6941.2003.tb01092.x[Crossref]
  • [33] L. Xie, T. Altindal, S. Chattopadhyay, X. L. Wu, Proc. Natl. Acad. Sci. USA 108, 22462251 (2011)
  • [34] M. Wan, C. J. O. Reichhardt, Z. Nussinov, C. Reichhardt, Phys. Rev. Lett. 101, 018102 (2008) http://dx.doi.org/10.1103/PhysRevLett.101.018102[Crossref]
  • [35] J. Tailleur, M. E. Cates, Eur. Phys. Lett. 86, 60002 (2009) http://dx.doi.org/10.1209/0295-5075/86/60002[Crossref]
  • [36] I. Berdakin et al., Phys. Rev. E 87, 052702 (2013) http://dx.doi.org/10.1103/PhysRevE.87.052702[Crossref]
  • [37] P. D. Frymier, R. M. Ford, H. C. Berg, P. T. Cummingssi, Proc. Natl. Acad. Sci. USA 92,6195-9 (1995)
  • [38] G. Li, J. X. Tang, Phys. Rev. Lett. 103, 078101 (2009) http://dx.doi.org/10.1103/PhysRevLett.103.078101[Crossref]
  • [39] G. Miño et al., Phys. Rev. Lett. 106, 0481021 (2011)
  • [40] K. Drescher, J. Dunkel, L. H. Cisneros, S. Ganguly, R. E. Goldstein, Proc. Natl. Acad. Sci. USA 108, 10940 (2011) http://dx.doi.org/10.1073/pnas.1019079108[Crossref]
  • [41] A. Costanzo, R. Di Leonardo, G. Ruocco, L. Angelani, J. Phys.: Condens. Matter 24, 065101 (2012)
  • [42] T. Vicsek, A. Czirok, E. Ben-Jacob, I. Cohen, O. Shochet, Phys. Rev. Lett. 75, 1226 (1995) http://dx.doi.org/10.1103/PhysRevLett.75.1226[Crossref]
  • [43] G. Grégoire, H. Chaté, Y. Tu, Physica D 181, 157 (2003). http://dx.doi.org/10.1016/S0167-2789(03)00102-7[Crossref]
  • [44] H. Chaté, F. Ginelli, G. Grégoire, F. Raynaud, Phys. Rev. E 77, 046113 (2008) http://dx.doi.org/10.1103/PhysRevE.77.046113[Crossref]
  • [45] E. Bertin, M. Droz, G. Grégoire, Phys. Rev. E 74, 022101 (2006) http://dx.doi.org/10.1103/PhysRevE.74.022101[Crossref]
  • [46] T. Ihle, Phys. Rev. E 83, 030901(R) (2011). http://dx.doi.org/10.1103/PhysRevE.83.030901[Crossref]
  • [47] R. Grossmann, L. Schimansky-Geier, P. Romanczuk, New J. Phys. 14, 073033 (2012) http://dx.doi.org/10.1088/1367-2630/14/7/073033[Crossref]
  • [48] P. Romanczuk, M. Baer, W. Ebeling, B. Lindner, L. Schimansky-Geier, Eur. Phys. J. Special Topics 202, 1 (2012) http://dx.doi.org/10.1140/epjst/e2012-01529-y[Crossref]
  • [49] M. Polin, I. Tuval, K. Drescher, J. P. Gollub, R. E. Goldstein, Science 325, 487 (2009) http://dx.doi.org/10.1126/science.1172667[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11534-013-0300-7
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.