Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2013 | 11 | 9 | 1074-1081

Article title

Calculation method for the continuum states of atomic systems

Content

Title variants

Languages of publication

EN

Abstracts

EN
In the present work, we develop a calculational method of solving the scattering equations for spherically symmetric potentials by expanding the solutions on Coulomb functions. We utilize a multistep integration scheme together with the standard partial wave analysis in a region where the potential term dominates. The method applies to any physical problem expressed as [∇
2 + V(r) + k
2]ψ(r) = 0, while the extension of the method to more general scattering problems is briefly discussed. At present, we demonstrate a two-step Coulomb-fitted integration scheme by calculating the short-range scattering phase shifts for various potentials V (r).

Publisher

Journal

Year

Volume

11

Issue

9

Pages

1074-1081

Physical description

Dates

published
1 - 9 - 2013
online
24 - 11 - 2013

Contributors

References

  • [1] W. Ackermann et al., Nature Photonics 1, 336 (2007) http://dx.doi.org/10.1038/nphoton.2007.76[Crossref]
  • [2] M. Meyer et al., Phys. Rev. A 74, 011401 (2006) http://dx.doi.org/10.1103/PhysRevA.74.011401[Crossref]
  • [3] V. Richardson et al., J. Phys. B 45, 085601 (2012) http://dx.doi.org/10.1088/0953-4075/45/8/085601[Crossref]
  • [4] L. A. A. Nikolopoulos, P. Lambropoulos, J. Phys. B 40, 1347 (2007) http://dx.doi.org/10.1088/0953-4075/40/7/004[Crossref]
  • [5] L. A. A. Nikolopoulos, T. J. Kelly, J. T. Costello, Phys. Rev. A 84, 063419 (2011) http://dx.doi.org/10.1103/PhysRevA.84.063419[Crossref]
  • [6] A. Raptis, J. Cash, Comput. Phys. Commun. 44, 95 (1987) http://dx.doi.org/10.1016/0010-4655(87)90020-8[Crossref]
  • [7] L. A. A. Nikolopoulos, J. Math. Chem. 37, 193 (2005)
  • [8] M. Abramowitz, I. Stegun, Handbook of Mathematical Functions with formulas, graphs and mathematical tables (Dover Publications Inc., New York, 1968)
  • [9] H. A. Bethe, E. E. Salpeter, Quantum mechanics of one- and two-electron atoms (Plenum/Rosetta Edition, New York, 1977) http://dx.doi.org/10.1007/978-1-4613-4104-8[Crossref]
  • [10] M. Goldberger, K. Watson, Collision Theory (Wiley, New York, 1964)
  • [11] R. G. Newton, Scattering Theory of Waves and Particles (Dover Publications Inc., New York, 2002)
  • [12] C. J. Joachain, Quantum Collision Theory, (North-Holland Publishing Company, Amsterdam, 1975 [Table 9.7])
  • [13] P. G. Burke, M. J. Seaton, Meth. Comp. Phys. 10, 1 (1971)
  • [14] M. J. Seaton, Rep. Prog. Phys. 46, 167 (1983) http://dx.doi.org/10.1088/0034-4885/46/2/002[Crossref]
  • [15] K. Smith, Calculation of Atomic Collision Processes (Johns Wiley and Sons Inc., 1971)
  • [16] A. Messiah, Quantum Mechanics, (Dover, New York, 1999)
  • [17] C. F. Fischer, The Hartree-Fock method for atoms (John Wiley & Sons, Inc, New York, 1977)
  • [18] R. Cowan, The Theory of Atomic Structure (Univ. of California Press, 1981)
  • [19] A. Burgess, Proc. Phys. Soc. 81, 442 (1963) http://dx.doi.org/10.1088/0370-1328/81/3/308[Crossref]
  • [20] H. Liu, J. Xi, B. Li, Phys. Rev. A 48, 228 (1993) http://dx.doi.org/10.1103/PhysRevA.48.228[Crossref]
  • [21] G. Avdelas, T. Simos, Phys. Rev. E 62, 1375 (2000) http://dx.doi.org/10.1103/PhysRevE.62.1375[Crossref]
  • [22] B. W. Shore, J. Phys. B 7, 2502 (1974) http://dx.doi.org/10.1088/0022-3700/7/18/015[Crossref]
  • [23] A. C. Allison, J. Comput. Phys. 6, 378 (1970) http://dx.doi.org/10.1016/0021-9991(70)90037-9[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11534-013-0288-z
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.