Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2013 | 11 | 10 | 1423-1432

Article title

Existence of positive solutions for nonlocal boundary value problem of fractional differential equation

Content

Title variants

Languages of publication

EN

Abstracts

EN
In this paper, we study a type of nonlinear fractional differential equations multi-point boundary value problem with fractional derivative in the boundary conditions. By using the upper and lower solutions method and fixed point theorems, some results for the existence of positive solutions for the boundary value problem are established. Some examples are also given to illustrate our results.

Publisher

Journal

Year

Volume

11

Issue

10

Pages

1423-1432

Physical description

Dates

published
1 - 10 - 2013
online
19 - 12 - 2013

Contributors

author
  • College of Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
author
  • College of Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
author
  • College of Science, University of Shanghai for Science and Technology, Shanghai, 200093, China

References

  • [1] R. Hilfer, Applications of Fractional Calculus in Physics, (World Scientific, Singapore, 2000) http://dx.doi.org/10.1142/9789812817747[Crossref]
  • [2] D. Baleanu, J. A. T. Machado, A. Luo, Eds., New Trends in Nanotechnology and Fractional Calculus Applications, (Springer, 2010) http://dx.doi.org/10.1007/978-90-481-3293-5[Crossref]
  • [3] T. J. Machado, V. Kiryakova, F. Mainardi, Commun. Nonlinear Sci. Numer. Simul. 16, 1140 (2011) http://dx.doi.org/10.1016/j.cnsns.2010.05.027[Crossref]
  • [4] D. Baleanu, K. Diethelm, E. Scalas, J. J. Trujillo, Fractional Calculus Models and Numerical Methods, Series on Complexity, Nonlinearity and Chaos, (World Scientific, 2012)
  • [5] I. Podlubny, Fractional Differential Equations, Mathematics in cience and Engineering, (New York: Academic Press, 1999)
  • [6] K. Diethelm, The Analysis of Fractional Differential Equation, (Spring-Verlag Heidelberg, 2010) http://dx.doi.org/10.1007/978-3-642-14574-2[Crossref]
  • [7] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, in: North-Holland Mathematics Studies, (Elsevier Science B. V. Amsterdam, 2006)
  • [8] A. K. Golmankhaneh, A. K. Golmankhaneh, D. Baleanu, Rom. Rep. Phys., 63, 609 (2011)
  • [9] O.P. Agrawal, D. Baleanu, J. Vib. Control, 13, 1269 (2007) http://dx.doi.org/10.1177/1077546307077467[Crossref]
  • [10] X. Su, Comput. Math. Appl., 64, 3425 (2012) http://dx.doi.org/10.1016/j.camwa.2012.02.043[Crossref]
  • [11] J. Wang, Y. Zhou, W. Wei, H. Xu, Comput. Math. Appl., 62, 1427 (2011) http://dx.doi.org/10.1016/j.camwa.2011.02.040[Crossref]
  • [12] G. Mophou, O. Nakoulima, G. N’Guerekata, Nonlinear Stud. 17, 15 (2010)
  • [13] L. Lin, X. Liu, H. Fang, Electron. J. Diff. Equ. 100, 1 (2012)
  • [14] M. Jia, X. Liu, Comput. Math. Appl. 62, 1405 (2011) http://dx.doi.org/10.1016/j.camwa.2011.03.026[Crossref]
  • [15] X. Liu, M. Jia, B. Wu, Electron. J. Qual. Theo. 69, 1 (2009)
  • [16] Z. Bai, H. Lü, J. Math. Anal. Appl. 311, 495 (2005) http://dx.doi.org/10.1016/j.jmaa.2005.02.052[Crossref]
  • [17] X. Liu, M. Jia, Comput. Math. Appl. 59, 2880 (2010) http://dx.doi.org/10.1016/j.camwa.2010.02.005[Crossref]
  • [18] D. Jiang, C. Yuan, Nonlinear Anal. 72, 710 (2009) http://dx.doi.org/10.1016/j.na.2009.07.012[Crossref]
  • [19] S. Liang, J. Zhang, Nonlinear Anal. 71, 5545 (2009) http://dx.doi.org/10.1016/j.na.2009.04.045[Crossref]
  • [20] E. R. Kaufmann, E. Mboumi, Electron. J. Qual. Theo. 3, 1(2008)
  • [21] X. Xu, D. Jiang, C. Yuan, Nonlinear Anal. 71, 4676 (2010) http://dx.doi.org/10.1016/j.na.2009.03.030[Crossref]
  • [22] Y. Zhao, S. Sun, Z. Han, Q. Li, Commun. Nonlinear Sci. Numer. Simul. 16, 2086 (2011) http://dx.doi.org/10.1016/j.cnsns.2010.08.017[Crossref]
  • [23] X. Zhao, C. Chai, W. Ge, Commun. Nonlinear Sci. Numer. Simul. 16, 3665 (2011) http://dx.doi.org/10.1016/j.cnsns.2011.01.002[Crossref]
  • [24] C. F. Li, X. N. Luo, Y. Zhou, Comput. Math. Appl. 59, 1363 (2010) http://dx.doi.org/10.1016/j.camwa.2009.06.029[Crossref]
  • [25] Z. Bai, Nonlinear Anal. 72, 916 (2010) http://dx.doi.org/10.1016/j.na.2009.07.033[Crossref]
  • [26] J. Wang, Y. Zhou, W. Wei, Commun. Nonlinear Sci. Numer. Simulat. 16, 4049 (2011) http://dx.doi.org/10.1016/j.cnsns.2011.02.003[Crossref]
  • [27] M. A. Krasnosel’skii, Positive Solutions of Operator Equations, (Noordhoff, Groningen, 1964)
  • [28] R. Leggett, L. Williams, Multiple positive fixed points of nonlinear operators on ordered Banach spaces, Indiana Univ. J. 28, 673 (1979) http://dx.doi.org/10.1512/iumj.1979.28.28046[Crossref]
  • [29] D. Guo, V. Lakshmikantham, Nonlinear Problems in Abstract Cones, (Academic Press, San Diego, 1988)

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11534-013-0238-9
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.