Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2013 | 11 | 5 | 568-574

Article title

Method simplifying calculation of coefficients of fractional parentage for translationally invariant shell-model

Content

Title variants

Languages of publication

EN

Abstracts

EN
A new procedure for large-scale calculations of the coefficients of fractional parentage (CFP) for many-particle systems is presented. The approach is based on a simple enumeration scheme for antisymmetric N particle states, and we suggest an efficient method for constructing the eigenvectors of two-particle transposition operator $$P_{N_1 ,N}$$ in a subspace where N
1 and N
2 = N − N
1 nucleons basis states are already antisymmetrized. The main result of this paper is that according to permutation operators $$P_{N_1 ,N}$$ eigenvalues we can distinguish totally asymmetrical N particle states from the other states with lower degree of asymmetry.

Publisher

Journal

Year

Volume

11

Issue

5

Pages

568-574

Physical description

Dates

published
1 - 5 - 2013
online
28 - 7 - 2013

Contributors

  • Vytautas Magnus University, K. Donelaičio 58, LT-44248, Kaunas, Lithuania
  • Center for Physical Sciences and Technology, Savanorių 231, LT-02300, Vilnius, Lithuania
  • Center for Physical Sciences and Technology, Savanorių 231, LT-02300, Vilnius, Lithuania

References

  • [1] G. Racah, Phys. Rev. 63, 367 (1943) http://dx.doi.org/10.1103/PhysRev.63.367[Crossref]
  • [2] P.J. Redmond, Proc. R. Soc. London Ser. A 222, 84 (1954) http://dx.doi.org/10.1098/rspa.1954.0054[Crossref]
  • [3] A. Deveikis, G.P. Kamuntavicius, Lith. J. Phys. 35, 14 (1995)
  • [4] A. Deveikis, R.K. Kalinauskas, B.R. Barrett, Ann. Phys-New York 296, 287 (2002) http://dx.doi.org/10.1006/aphy.2002.6229[Crossref]
  • [5] C.R. Sarma, A.V.V. Nampoothiri, J. Comput. Chem. 21, 185 (2000) http://dx.doi.org/10.1002/(SICI)1096-987X(200002)21:3<185::AID-JCC2>3.0.CO;2-P[Crossref]
  • [6] G.P. Kamuntavicius, A. Mašalaitė, S. Mickevicius, D. Germanas, R.K. Kalinauskas, R. Žemaiciūnienė, Lith. J. Phys. 46, 395 (2006) http://dx.doi.org/10.3952/lithjphys.46412[Crossref]
  • [7] M. Hamermesh, Group Theory and its Application to Physics, (Addison-Wesley, New York, 1963)
  • [8] V. Vanagas, Algebraic Methods in Nuclear Theory, (Mintis, Vilnius, 1971) (in Russian)
  • [9] G.P. Kamuntavicius, D. Germanas, R.K. Kalinauskas, R. Žemaiciūnienė, Lith. J. Phys. 43, 81 (2003)
  • [10] G.P. Kamuntavicius, R.K. Kalinauskas, B.R. Barrett, S. Mickevicius, D. Germanas, Nucl. Phys. A 695, 191 (2001) http://dx.doi.org/10.1016/S0375-9474(01)01101-0[Crossref]
  • [11] D. Germanas, R.K. Kalinauskas, G.P. Kamuntavicius, R. Žemaiciūnienė, Lith. J. Phys. 44, 243 (2004) http://dx.doi.org/10.3952/lithjphys.44401[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11534-013-0215-3
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.