Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2013 | 11 | 10 | 1392-1398

Article title

Variational iteration method - a promising technique for constructing equivalent integral equations of fractional order

Content

Title variants

Languages of publication

EN

Abstracts

EN
The variational iteration method is newly used to construct various integral equations of fractional order. Some iterative schemes are proposed which fully use the method and the predictor-corrector approach. The fractional Bagley-Torvik equation is then illustrated as an example of multi-order and the results show the efficiency of the variational iteration method’s new role.

Publisher

Journal

Year

Volume

11

Issue

10

Pages

1392-1398

Physical description

Dates

published
1 - 10 - 2013
online
19 - 12 - 2013

References

  • [1] K. Diethelm, N. J. Ford, Appl. Math. Comput. 154, 621 (2004) http://dx.doi.org/10.1016/S0096-3003(03)00739-2[Crossref]
  • [2] F. W. Liu, V. Anh, I. Turner, J. Comput. Appl. Math. 166, 209 (2004) http://dx.doi.org/10.1016/j.cam.2003.09.028[Crossref]
  • [3] C. Tadjeran, M. M. Meerschaert, H. P. Scheffler, J. Comput. Phys. 213, 205 (2006) http://dx.doi.org/10.1016/j.jcp.2005.08.008[Crossref]
  • [4] W. H. Deng, J. Comput. Phys. 227, 1510 (2007) http://dx.doi.org/10.1016/j.jcp.2007.09.015[Crossref]
  • [5] X. J. Li, C. J. Xu, SIAM J. Numer. Anal. 47, 2108 (2009) http://dx.doi.org/10.1137/080718942[Crossref]
  • [6] C. P. Li, F. H. Zeng, Int. J. Bifur. Chao. 22, 1230014 (2012) http://dx.doi.org/10.1142/S0218127412300145[Crossref]
  • [7] H. G. Sun, W. Chen, Y. Q. Chen, Physica A 388, 4586 (2009) http://dx.doi.org/10.1016/j.physa.2009.07.024[Crossref]
  • [8] N. T. Shawagfeh, Appl. Math. Comput. 131, 517 (2002) http://dx.doi.org/10.1016/S0096-3003(01)00167-9[Crossref]
  • [9] H. Jafari, V. Daftardar-Gejji, Appl. Math. Comput. 180, 488 (2006) http://dx.doi.org/10.1016/j.amc.2005.12.031[Crossref]
  • [10] J. S. Duan, R. Rach, D. Baleanu, A. M. Wazwaz, Commun. Frac. Calc. 3, 73 (2012)
  • [11] Q. Wang, Chaos, Soliton. Fractal. 35, 843 (2008) http://dx.doi.org/10.1016/j.chaos.2006.05.074[Crossref]
  • [12] S. Momani, Z. Odibat, Phys. Lett. A 365, 345 (2007) http://dx.doi.org/10.1016/j.physleta.2007.01.046[Crossref]
  • [13] J. H. He, Comput. Meth. Appl. Mech. Engr. 167, 57 (1998) http://dx.doi.org/10.1016/S0045-7825(98)00108-X[Crossref]
  • [14] G. C. Wu, D. Baleanu, Appl. Math. Model. 37, 6183 (2013) http://dx.doi.org/10.1016/j.apm.2012.12.018[Crossref]
  • [15] I. Podlubny, Fractional Differential Equations (Academic Press, New York, 1999)
  • [16] A. A. Kilbas, H. M. Srivastav, J. J. Trujillo, Theory and applications of fractional differential equations (Elsevier, New York, 2006)
  • [17] D. Baleanu, K. Diethelm, E. Scalas, J. J. Trujillo, Fractional calculus models and numerical methods (World Scientific, Singapore, 2012)
  • [18] G. C. Wu, D. Baleanu, Adv. Diff. Equa. 2013, 18 (2013) http://dx.doi.org/10.1186/1687-1847-2013-18[Crossref]
  • [19] G. C. Wu, D. Baleanu, Adv. Diff. Equa. 2013, 21 (2013) http://dx.doi.org/10.1186/1687-1847-2013-21[Crossref]
  • [20] J. H. He, Int. J. Mod. Phys. B 20, 1141 (2006) http://dx.doi.org/10.1142/S0217979206033796[Crossref]
  • [21] J. H. He, Abstr. Appl. Anal. 2012, 916793 (2012)
  • [22] A. Ghorbani, Comput. Meth. Appl. Mech. Engr. 197, 4173 (2007) http://dx.doi.org/10.1016/j.cma.2008.04.015[Crossref]
  • [23] J. H. He, X. H. Wu, Comput. Math. Appl. 54, 881 (2007) http://dx.doi.org/10.1016/j.camwa.2006.12.083[Crossref]
  • [24] J. H. He, J. Comput. Appl. Math. 207, 3 (2007) http://dx.doi.org/10.1016/j.cam.2006.07.009[Crossref]
  • [25] S. A. Khuri, A. Sayfy, Appl. Math. Lett. 25, 2298 (2012) http://dx.doi.org/10.1016/j.aml.2012.06.020[Crossref]
  • [26] H. Jafari, M. Saeidy, D. Baleanu, Cent. Eur. J. Phys. 10, 76 (2012) http://dx.doi.org/10.2478/s11534-011-0083-7[Crossref]
  • [27] H. Jafari, C. M. Khalique, Commun. Frac. Calc. 3, 38 (2012)
  • [28] K. Diethelm, The Analysis of Fractional Differential Equations (Springer-Verlag, New York, 2004)

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11534-013-0207-3
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.