Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2013 | 11 | 2 | 206-212

Article title

Determination of the two dimensional distribution of the attempt relaxation times and activation energies from temperature dependence of dielectric dispersion

Content

Title variants

Languages of publication

EN

Abstracts

EN
We present a method for numerical calculation of two dimensional distributions of the attempt relaxation times and activation energies from the temperature dependence of the experimental dielectric permittivity dispersion. We introduce empirical attempts to account for broad and/or asymmetric dispersions with the idea of using a weighted collection of Debye relaxation times. Then we present a modification of the aforementioned idea including attempt relaxation time and activation energy using the Arrhenius law, which significantly complicates the computation of the aforementioned distribution. Incorporating the activation energy and the attempt relaxation time into the equation transforms the discretized matrix equations into tensor equations. We rework the tensor equations into simpler matrix equations, thus permitting us to solve the presented discretized integral equation by using existing Least Distance Problem solving methods. Also, we present a regularization method and a way to choose the regularization parameter based on a best fit criterion. In the end we discuss the method showing some simulated results and experimental results. We then point out some problems involved in the calculations and propose methods to reduce their significance.

Publisher

Journal

Year

Volume

11

Issue

2

Pages

206-212

Physical description

Dates

published
1 - 2 - 2013
online
9 - 2 - 2013

Contributors

  • Vilnius University Faculty of Physics, Saulėtekio 9, LT-10222, Vilnius, Lithuania
author
  • Vilnius University Faculty of Physics, Saulėtekio 9, LT-10222, Vilnius, Lithuania
  • Vilnius University Faculty of Physics, Saulėtekio 9, LT-10222, Vilnius, Lithuania
  • Semiconductor Physics Institute, A. Gostauto str. 11, LT-01108, Vilnius, Lithuania
  • Semiconductor Physics Institute, A. Gostauto str. 11, LT-01108, Vilnius, Lithuania
author
  • Fakultāt fūr Physik und Geowissenschaften der Universitāt Leipzig, Linnéstrasse 5, D-04103, Leipzig, Germany

References

  • [1] P. Debye, Ver. Deut. Phys. Gesell 17, 777 (1913)
  • [2] K. S. Cole, R. H. Cole, J. Chem. Phys. 9, 341 (1941) http://dx.doi.org/10.1063/1.1750906[Crossref]
  • [3] K. S. Cole, R. H. Cole, J. Chem. Phys 10, 98 (1942) http://dx.doi.org/10.1063/1.1723677[Crossref]
  • [4] S. Havriliak, S. Negami, Polymer 8, 161 (1967) http://dx.doi.org/10.1016/0032-3861(67)90021-3[Crossref]
  • [5] R. Zorn, J. Polym. Sci. Pol. Phys. 37, 1043 (1999) http://dx.doi.org/10.1002/(SICI)1099-0488(19990515)37:10<1043::AID-POLB9>3.0.CO;2-H[Crossref]
  • [6] R. Zorn, J. Chem. Phys. 116, 3204 (2002) http://dx.doi.org/10.1063/1.1446035[Crossref]
  • [7] G. Williams, D. C. Watts, T. Faraday Soc. 66, 80 (1970) http://dx.doi.org/10.1039/tf9706600080[Crossref]
  • [8] S. W. Provencher, Comput. Phys. Commun. 27, 213 (1982) http://dx.doi.org/10.1016/0010-4655(82)90173-4[Crossref]
  • [9] A. Matulis, Ž. Kancleris, Lithuanian Journal of Physics 37, 475 (1997)
  • [10] J. Macutkevic, J. Banys, A. Matulis, Nonlinear analysis: Modelling and Control 9, 75 (2004)
  • [11] J. Dolinšek, B. Zalar, R. Blinc, Phys. Rev. B 50, 805 (1994) http://dx.doi.org/10.1103/PhysRevB.50.805[Crossref]
  • [12] A. N. Tikhonov, V. Y. Arsenin, Solutions of ill-posed problems (Wiley, New York, 1977)
  • [13] C. L. Lawson, R. J. Hanson, Solving Least Squares Problems (SIAM, Philadelphia, 1995) http://dx.doi.org/10.1137/1.9781611971217[Crossref]
  • [14] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C, the Art of Scientific Computing (Cambridge University Press, Cambridge, 1994)
  • [15] A. Mikonis et al., Ferroelectrics 353, 154 (2007) http://dx.doi.org/10.1080/00150190701368117[Crossref]
  • [16] J. Banys, R. Grigalaitis, A. Mikonis, J. Macutkevic, P. Keburis, Physica Status Solidi C 6, 2725 (2009) http://dx.doi.org/10.1002/pssc.200982529[Crossref]
  • [17] J. C. Dyre, J. Phys. C Solid State 19, 5655 (1986) http://dx.doi.org/10.1088/0022-3719/19/28/016[Crossref]
  • [18] V. Maisonneuve, V. Cajipe, A. Simon, R. von der Muhll, J. Ravez, Phys. Rev. B 56, 10860 (1997) http://dx.doi.org/10.1103/PhysRevB.56.10860[Crossref]
  • [19] A. Džiaugys, J. Banys, J. Macutkevic, R. Sobiestianskas, Y. Vysochanskii, Physica Status Solidi A 207, 1960 (2010) http://dx.doi.org/10.1002/pssa.200925346[Crossref]
  • [20] A. Džiaugys et al., In: M. Lallart (Ed.), Ferroelectrics - Characterization and Modeling, (InTech, Rijeka, 2011), 153

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11534-012-0139-3
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.