Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2013 | 11 | 1 | 89-95

Article title

Function projective synchronization of two four-scroll hyperchaotic systems with unknown parameters

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
Function projective synchronization (FPS) of two novel hyperchaotic systems with four-scroll attractors which have been found up to the present is investigated. Adaptive control is employed in the situation that system parameters are unknown. Based on Lyapunov stability theory, an adaptive controller and a parameter update law are designed so that the two systems can be synchronized asymptotically by FPS. Numerical simulation is provided to show the effectiveness of the proposed adaptive controller and the parameter update law.

Publisher

Journal

Year

Volume

11

Issue

1

Pages

89-95

Physical description

Dates

published
1 - 1 - 2013
online
15 - 1 - 2013

Contributors

author
  • Institute of Applied Sciences, Shanghai Dianji University, No.1350, Ganlan Road, Lingang New City, Pudong New District, Shanghai, 201306, China

References

  • [1] Z. X. Wang, K. Shen, Cent. Eur. J. Phys. 6, 402 (2008) http://dx.doi.org/10.2478/s11534-008-0063-8[Crossref]
  • [2] H. Merta, Chaos Solitons Fract. 27, 279 (2006) http://dx.doi.org/10.1016/j.chaos.2005.03.028[Crossref]
  • [3] S. Gakkhar, R. K. Naji, Commun. Nonlinear Sci. Numer. Simul. 10, 105 (2005) http://dx.doi.org/10.1016/S1007-5704(03)00120-5[Crossref]
  • [4] H. J. Chen, M. C. Li, J. Econ. Behav. Organ. 65, 245 (2008) http://dx.doi.org/10.1016/j.jebo.2005.09.005[Crossref]
  • [5] E. N. Lorenz, J. Atmos. Sci. 20, 130 (1963) http://dx.doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2[Crossref]
  • [6] G. R. Chen, T. Ueta, Int. J. Bifurc. Chaos 9, 1465 (1999) http://dx.doi.org/10.1142/S0218127499001024[Crossref]
  • [7] G. Y. Wang et al., Chin. Phys. 15, 2872 (2006) http://dx.doi.org/10.1088/1009-1963/15/12/018[Crossref]
  • [8] C. Liu, L. Liu, T. Liu, Chaos Solitons Fract. 39, 1950 (2009) http://dx.doi.org/10.1016/j.chaos.2007.06.079[Crossref]
  • [9] S. Dadras, H. R. Momeni, Phys. Lett. A 373, 3637 (2009) http://dx.doi.org/10.1016/j.physleta.2009.07.088[Crossref]
  • [10] L. Wang, Nonlinear Dyn. 56, 453 (2009) http://dx.doi.org/10.1007/s11071-008-9417-4[Crossref]
  • [11] G. Qi, G. Chen, Y. Zhang, Phys. Lett. A 352, 386 (2006) http://dx.doi.org/10.1016/j.physleta.2005.12.030[Crossref]
  • [12] G. Qi, B. J. Wyk, M. A. Wyk, Chaos Solitons Fract. 40, 2016 (2009) http://dx.doi.org/10.1016/j.chaos.2007.09.095[Crossref]
  • [13] Q. Jia, Phys. Lett. A 371, 410 (2007) http://dx.doi.org/10.1016/j.physleta.2007.06.038[Crossref]
  • [14] G. M. Mahmoud, E. E. Mahmoud, M. E. Ahmed, Nonlinear Dyn. 58, 725 (2009) http://dx.doi.org/10.1007/s11071-009-9513-0[Crossref]
  • [15] Y. J. Niu, X. Y. Wang, M. J. Wang, H. G. Zhang, Commun. Nonlinear Sci. Numer. Simulat. 15, 3518 (2010) http://dx.doi.org/10.1016/j.cnsns.2009.08.014[Crossref]
  • [16] S. Dadras, H. R. Momeni, Phys. Lett. A 374, 1368 (2010) http://dx.doi.org/10.1016/j.physleta.2010.01.030[Crossref]
  • [17] S. Cang, G. Qi, Z. Chen, Nonlinear Dyn. 59, 515 (2010) http://dx.doi.org/10.1007/s11071-009-9558-0[Crossref]
  • [18] J. P. Goedgebuer, L. Larger, H. Port, Phys. Rev. Lett. 80, 2249 (1998) http://dx.doi.org/10.1103/PhysRevLett.80.2249[Crossref]
  • [19] A. Kiani, K. Fallahi, N. Pariz, H. Leung, Commun. Nonlinear Sci. Numer. Simulat. 14, 863 (2009) http://dx.doi.org/10.1016/j.cnsns.2007.11.011[Crossref]
  • [20] X. J. Wu, H. Wang, H. T. Lu, Nonlinear Anal. 12, 1288 (2011) http://dx.doi.org/10.1016/j.nonrwa.2010.09.026[Crossref]
  • [21] L. M. Pecora, T. L. Carroll, Phys. Rev. Lett. 64, 821 (1990) http://dx.doi.org/10.1103/PhysRevLett.64.821[Crossref]
  • [22] J. A. Laoye, U. E. Vincent, S. O. Kareem, Chaos Solitons Fract. 39, 356 (2009) http://dx.doi.org/10.1016/j.chaos.2007.04.020[Crossref]
  • [23] A. L. Ricardo, M. G. Rafael, Chaos Solitons Fract. 38, 531 (2008) http://dx.doi.org/10.1016/j.chaos.2006.11.038[Crossref]
  • [24] J. M. Nazzal, A. N. Natsheh, Chaos Solitons Fract. 33, 695 (2007) http://dx.doi.org/10.1016/j.chaos.2006.01.071[Crossref]
  • [25] Y. Tang, J. Fang, Commun. Nonlinear Sci. Numer. Simulat. 14, 3615 (2009) http://dx.doi.org/10.1016/j.cnsns.2009.02.006[Crossref]
  • [26] G. Santoboni, A. Y. Pogromsky, H. Nijmeijer, Phys. Lett. A 291, 265 (2001) http://dx.doi.org/10.1016/S0375-9601(01)00652-1[Crossref]
  • [27] Y. Chen, X. Chen, S. Gu, Nonlinear Anal. 9, 1929 (2007) http://dx.doi.org/10.1016/j.na.2006.02.033[Crossref]
  • [28] R. Mainieri, J. Rehacek, Phys. Rev. Lett. 82, 3042 (1999) http://dx.doi.org/10.1103/PhysRevLett.82.3042[Crossref]
  • [29] C. Y. Chee, D. Xu, Chaos Solitons Fract. 23, 1063 (2005)
  • [30] G. Alvarez, S. J. Li, F. Montoya, G. Pastor, M. Romera, Chaos Solitons Fract. 24, 775 (2005) http://dx.doi.org/10.1016/j.chaos.2004.09.038[Crossref]
  • [31] G. H. Li, Chaos Solitons Fract. 32, 1786 (2007) http://dx.doi.org/10.1016/j.chaos.2005.12.009[Crossref]
  • [32] R. Z. Luo, Phys. Lett. A 372, 3667 (2008) http://dx.doi.org/10.1016/j.physleta.2008.02.035[Crossref]
  • [33] T. H. Lee, J. H. Park, Chin. Phys. Lett. 26, 090507 (2009) http://dx.doi.org/10.1088/0256-307X/26/9/090507[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11534-012-0117-9
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.