EN
In this contribution, we discuss the nonrelativistic limit of the Dirac equation for a neutral particle with a permanent electric dipole moment interacting with external fields in a noninertial frame. We show a case where the geometry of the manifold can play the role of a hard-wall confining potential due to noninertial effects, and can yield bound states analogous to a confinement of the spin-half neutral particle interacting with external fields to a quantum dot described by a hard-wall confining potential [33].