Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2012 | 10 | 3 | 576-581

Article title

Vortices in superconducting nano-networks with anti-dots array

Content

Title variants

Languages of publication

EN

Abstracts

EN
Vortices (magnetic flux quanta) in the superconducting networks perforated with anti-dots (holes) arrays behave as electrons in atomic lattice of crystals. Repulsive and attractive interaction among vortices and anti-dots resemble to those among electrons and atoms in crystals. To confirm the variety of the vortex physics similar to the solid state physics, we have fabricated such superconducting networks with antidots array in metallic, inter-metallic and high-T
c superconductors (HTSCs), and have measured magneto-resistance of vortex-flow. In these materials, we have observed integer-matching at the matching fields and fractional-matching effect between them. Most of them are well explained by commensurability between Abrikosov vortex lattice and anti-dots array. Furthermore, the effect of the anti-dots array in HTSCs appears as another kind of phase transitions instead of to the first-order melting transition of vortex lattice in pristine samples.

Keywords

Publisher

Journal

Year

Volume

10

Issue

3

Pages

576-581

Physical description

Dates

published
1 - 6 - 2012
online
17 - 6 - 2012

Contributors

author
  • National Institute for Materials Science, Sengen 1-2-1, 305-0047, Tsukuba, Japan
author
  • National Institute for Materials Science, Sengen 1-2-1, 305-0047, Tsukuba, Japan
author
  • National Institute for Materials Science, Sengen 1-2-1, 305-0047, Tsukuba, Japan
  • National Institute for Materials Science, Sengen 1-2-1, 305-0047, Tsukuba, Japan

References

  • [1] P.C. Hohenberg, Phys. Rev. Lett. 158, 383 (1967)
  • [2] J.S. Langer, M. R. Ambegaokar, Phys. Rev. 164, 498 (1967) http://dx.doi.org/10.1103/PhysRev.164.498[Crossref]
  • [3] D.E. McCumber, B. I. Halperin, Phys. Rev. B 1, 1054 (1970) http://dx.doi.org/10.1103/PhysRevB.1.1054[Crossref]
  • [4] R.S. Newbower, M. R. Beasley, M. Tinkham, Phys. Rev. B 5, 864 (1972) http://dx.doi.org/10.1103/PhysRevB.5.864[Crossref]
  • [5] A. Bezryadin, C. N. Lau, M. Tinkham, Nature 404, 971 (2000) http://dx.doi.org/10.1038/35010060[Crossref]
  • [6] C.N. Lau et al., Phys. Rev. Lett. 87, 217003 (2001) http://dx.doi.org/10.1103/PhysRevLett.87.217003[Crossref]
  • [7] A.K. Geim et al., Nature 407, 55 (2000) http://dx.doi.org/10.1038/35024025[Crossref]
  • [8] A. Kanda et al., Phys. Rev. Lett. 93, 257002 (2004) http://dx.doi.org/10.1103/PhysRevLett.93.257002[Crossref]
  • [9] M. Baert et al., Phys. Rev. Lett. 74, 3269 (1995) http://dx.doi.org/10.1103/PhysRevLett.74.3269[Crossref]
  • [10] A.T. Fiory, A. F. Hebard, S. Somekh, Appl. Phys. Lett. 32, 73 (1978) http://dx.doi.org/10.1063/1.89845[Crossref]
  • [11] C.C. de Souza Silva et al., Nature 40, 651 (2004)
  • [12] T. Baturina et al., Physica B 329–333, 1496 (2003) http://dx.doi.org/10.1016/S0921-4526(02)02631-5[Crossref]
  • [13] J.E. Villagas et al., Science 302, 1188 (2003) http://dx.doi.org/10.1126/science.1090390[Crossref]
  • [14] J. van der Vondel et al., Phys. Rev. Lett. 94, 057003 (2005) http://dx.doi.org/10.1103/PhysRevLett.94.057003[Crossref]
  • [15] O.M. Stoll et al., Phys. Rev. B 65, 104518 (2002) http://dx.doi.org/10.1103/PhysRevB.65.104518[Crossref]
  • [16] E. Zeldov et al., Nature 375, 373 (1995) http://dx.doi.org/10.1038/375373a0[Crossref]
  • [17] S. Ooi, et al, Physica C 469, 1113 (2009) http://dx.doi.org/10.1016/j.physc.2009.05.206[Crossref]
  • [18] S.P. Chokalingam et al., Phys. Rev. B 77, 214503 (2008) http://dx.doi.org/10.1103/PhysRevB.77.214503[Crossref]
  • [19] A.D. Thakur et al., Appl. Phys. Lett. 94, 262501 (2009) http://dx.doi.org/10.1063/1.3167771[Crossref]
  • [20] T. Mochiku, K. Hirata, K. Kadowaki, Physica C 282–287, 475 (1997) http://dx.doi.org/10.1016/S0921-4534(97)00334-1[Crossref]
  • [21] G.S. Mkrtchyan, V. V. Schmidt, Sov. Phys. LETP 34, 195 (1972)
  • [22] V.V. Metlushuko et al., Phys. Rev. B 60, R12585 (1999) http://dx.doi.org/10.1103/PhysRevB.60.R12585[Crossref]
  • [23] J.I. Martin et al., Phys. Rev. B 62, 9110 (2000) http://dx.doi.org/10.1103/PhysRevB.62.9110[Crossref]
  • [24] M. Velez et al., Phys. Rev. B 65, 094509 (2002) http://dx.doi.org/10.1103/PhysRevB.65.094509[Crossref]
  • [25] C. Reichhardt, C. J. O. Reichhardt, Phys. Rev. B 78, 224511 (2008) http://dx.doi.org/10.1103/PhysRevB.78.224511[Crossref]
  • [26] A.D. Thakur, S. Ooi, K. Hirata, Physica C 469, 1071 (2009) http://dx.doi.org/10.1016/j.physc.2009.05.157[Crossref]
  • [27] S. Ooi, et al, J. Phys. Cof. Ser. 150, 052203 (2009) http://dx.doi.org/10.1088/1742-6596/150/5/052203[Crossref]
  • [28] C. Reichhardt, N. Gronbech-Jensen, Phys. Rev. B 63, 054510 (2001) http://dx.doi.org/10.1103/PhysRevB.63.054510[Crossref]
  • [29] M. Franz, S. Teitel, Phys. Rev. Lett. 73, 48 (1994) http://dx.doi.org/10.1103/PhysRevLett.73.480[Crossref]
  • [30] C. Dasgupta, O. T. Valls, Phys. Rev. Lett. 87, 257002 (2001) http://dx.doi.org/10.1103/PhysRevLett.87.257002[Crossref]
  • [31] C. Reichhardt et al., Phys. Rev. B 64, 144509 (2001) http://dx.doi.org/10.1103/PhysRevB.64.144509[Crossref]
  • [32] S.N. Gordeev et al., Phys. Rev. Lett. 85, 4549 (2000) http://dx.doi.org/10.1103/PhysRevLett.85.4594[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11534-012-0041-z
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.