Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2012 | 10 | 2 | 382-389

Article title

The fractional oscillator as an open system

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
A dynamical system governed by equations with derivatives of non-integer order, such as the fractional oscillator, can be considered as an open (non-isolated) system with memory. Fractional equations of motion are obtained from the interaction between the system and the environment with power-law spectral density.

Publisher

Journal

Year

Volume

10

Issue

2

Pages

382-389

Physical description

Dates

published
1 - 4 - 2012
online
31 - 3 - 2012

Contributors

  • Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, 119991, Russia

References

  • [1] S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives Theory and Applications, (Gordon and Breach, New York, 1993)
  • [2] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Application of Fractional Differential Equations, (Elsevier, Amsterdam, 2006)
  • [3] I. Podlubny, Fractional Differential Equations, (Academic Press, San Diego, 1999)
  • [4] G.M. Zaslavsky, Hamiltonian Chaos and Fractional Dynamics (Oxford University Press, Oxford, 2005)
  • [5] B. West, M. Bologna, P. Grigolini, Physics of Fractal Operators (Springer, New York, 2003)
  • [6] A. Carpinteri, F. Mainardi, (Eds.), Fractals and Fractional Calculus in Continuum Mechanics, (Springer, Wien, 1997)
  • [7] R. Hilfer, (Ed.), Applications of Fractional Calculus in Physics, (World Scientific, Singapore, 2000)
  • [8] J. Sabatier, O.P. Agrawal, J.A. Tenreiro Machado, (Eds.), Advances in Fractional Calculus. Theoretical Developments and Applications in Physics and Engineering, (Springer, Dordrecht, 2007)
  • [9] V.V. Uchaikin, Method of Fractional Derivatives, (Artishok, Ulyanovsk, 2008) in Russian.
  • [10] A.C.J. Luo, V.S. Afraimovich (Eds.), Long-range Interaction, Stochasticity and Fractional Dynamics, (Springer, Berlin, 2010)
  • [11] F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models, (World Scientific, Singapore, 2010) http://dx.doi.org/10.1142/9781848163300[Crossref]
  • [12] V.E. Tarasov, Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media, (Springer, New York, 2010)
  • [13] J. Klafter, S.C. Lim, R. Metzler (Eds.), Fractional Dynamics. Recent Advances, (World Scientific, Singapore, 2011)
  • [14] V.E. Tarasov, Theoretical Physics Models with Integro-Differentiation of Fractional Order, (IKI, RCD, 2011) in Russian
  • [15] V.E. Tarasov, G.M. Zaslavsky, Chaos 16, 023110 (2006) http://dx.doi.org/10.1063/1.2197167[Crossref]
  • [16] V.E. Tarasov, G.M. Zaslavsky, Commun. Nonlin. Sci. Numer. Simul. 11, 885 (2006) http://dx.doi.org/10.1016/j.cnsns.2006.03.005[Crossref]
  • [17] N. Laskin, G.M. Zaslavsky, Physica A 368, 38 (2006) http://dx.doi.org/10.1016/j.physa.2006.02.027[Crossref]
  • [18] N. Korabel, G.M. Zaslavsky, V.E. Tarasov, Commun. Nonlin. Sci. Numer. Simul. 12, 1405 (2007) http://dx.doi.org/10.1016/j.cnsns.2006.03.015[Crossref]
  • [19] V.E. Tarasov, J. Math. Phys. 47, 092901 (2006) http://dx.doi.org/10.1063/1.2337852[Crossref]
  • [20] W. Min, G. Luo, B.J. Cherayil, S.C. Kou, X.S. Xie, Phys. Rev. Lett. 94, 198302 (2005) http://dx.doi.org/10.1103/PhysRevLett.94.198302[Crossref]
  • [21] H. Mori, Prog. Theor. Phys. 33, 423 (1965) http://dx.doi.org/10.1143/PTP.33.423[Crossref]
  • [22] R. Kubo, Rep. Prog. Phys. 29, 255 (1966) http://dx.doi.org/10.1088/0034-4885/29/1/306[Crossref]
  • [23] S. Kempfle, I. Schafer, H. Beyer, Nonlinear Dynam. 29, 99 (2002) http://dx.doi.org/10.1023/A:1016595107471[Crossref]
  • [24] F. Mainardi, in W.F. Ames (Ed.), Proceedings 12-th IMACS World Congress, Vol. 1, 329 (1994)
  • [25] F. Mainardi, P. Pironi, Extracta Mathematicae 10, 140 (1996)
  • [26] V. Kobelev, E. Romanov, Prog. Theor Phys Suppl. 139, 470 (2000) http://dx.doi.org/10.1143/PTPS.139.470[Crossref]
  • [27] E. Lutz, Phys. Rev. E 64, 051106 (2001) http://dx.doi.org/10.1103/PhysRevE.64.051106[Crossref]
  • [28] A. A. Stanislavsky, Phys. Rev. E 67, 021111 (2003) http://dx.doi.org/10.1103/PhysRevE.67.021111[Crossref]
  • [29] K. S. Fa, Phys. Rev. E 73, 061104 (2006) http://dx.doi.org/10.1103/PhysRevE.73.061104[Crossref]
  • [30] K. S. Fa, Eur. Phys. J. E 24, 139 (2007) http://dx.doi.org/10.1140/epje/i2007-10224-2[Crossref]
  • [31] S. Burov, E. Barkai, Phys. Rev. Lett. 100, 070601 (2008) http://dx.doi.org/10.1103/PhysRevLett.100.070601[Crossref]
  • [32] S. Burov, E. Barkai, Phys. Rev. E 78, 031112 (2008) http://dx.doi.org/10.1103/PhysRevE.78.031112[Crossref]
  • [33] S.C. Lima, M. Lib, L.P. Teoc, Phys. Lett. A 372, 6309 (2008) http://dx.doi.org/10.1016/j.physleta.2008.08.045[Crossref]
  • [34] R.F. Camargo, A.O. Chiacchio, R. Charnet, E.C. Oliveira, J. Math. Phys. 50, 06350 (2009)
  • [35] R. Gorenflo, F. Mainardi, In: Fractals and Fractional Calculus in Continuum Mechanics, A. Carpinteri and F. Mainardi (Ed.), (Springer, Wien and New York 1997) 223
  • [36] F. Mainardi, R. Gorenflo, J. Comput. Appl. Math. 118, 283 (2000) http://dx.doi.org/10.1016/S0377-0427(00)00294-6[Crossref]
  • [37] F. Mainardi, Chaos Solitons Fractals, 7, 1461 (1996) http://dx.doi.org/10.1016/0960-0779(95)00125-5[Crossref]
  • [38] G. M. Zaslavsky, A.A. Stanislavsky, M. Edelman, Chaos 16, 013102 (2006) http://dx.doi.org/10.1063/1.2126806[Crossref]
  • [39] A.A. Stanislavsky, Phys. Rev. E 70, 051103 (2004) http://dx.doi.org/10.1103/PhysRevE.70.051103[Crossref]
  • [40] A.A. Stanislavsky, Physica A 354, 101, (2005) http://dx.doi.org/10.1016/j.physa.2005.02.033[Crossref]
  • [41] A.A. Stanislavsky, Eur. Phys. J. B, 49, 93 (2006) http://dx.doi.org/10.1140/epjb/e2006-00023-3[Crossref]
  • [42] V.E. Tarasov, G.M. Zaslavsky, Physica A 368, 399 (2006) http://dx.doi.org/10.1016/j.physa.2005.12.015[Crossref]
  • [43] B.N.N. Achar, J.W. Hanneken, T. Clarke, Physica A 339, 311 (2004) http://dx.doi.org/10.1016/j.physa.2004.03.030[Crossref]
  • [44] B.N.N. Achar, J.W. Hanneken, T. Clarke, Physica A 309, 275 (2002) http://dx.doi.org/10.1016/S0378-4371(02)00609-X[Crossref]
  • [45] B.N.N. Achar, J.W. Hanneken, T. Enck, T. Clarke, Physica A 297, 361 (2001) http://dx.doi.org/10.1016/S0378-4371(01)00200-X[Crossref]
  • [46] A. Tofighi, Physica A 329, 29 (2003) http://dx.doi.org/10.1016/S0378-4371(03)00598-3[Crossref]
  • [47] A. Tofighi, H.N. Poura, Physica A 374, 41 (2007) http://dx.doi.org/10.1016/j.physa.2006.07.025[Crossref]
  • [48] V.E. Tarasov, Phys. Lett. A. 372, 2984 (2008) http://dx.doi.org/10.1016/j.physleta.2008.01.037[Crossref]
  • [49] V.E. Tarasov, Theor. Math. Phys. 158, 179 (2009) http://dx.doi.org/10.1007/s11232-009-0015-5[Crossref]
  • [50] V.E. Tarasov, J. Math. Phys. 49, 102112 (2008) http://dx.doi.org/10.1063/1.3009533[Crossref]
  • [51] V.E. Tarasov, In: Fractional Dynamics in Physics: Recent Advances, J. Klafter, S.C. Lim, R. Metzler (Eds.), Chapter 19 (World Scientific, Singapore, 2011) 447
  • [52] F. Riewe, Phys. Rev. E 55, 3581 (1997) http://dx.doi.org/10.1103/PhysRevE.55.3581[Crossref]
  • [53] O.P. Agrawal, J. Math. Anal. 272, 368 (2002) http://dx.doi.org/10.1016/S0022-247X(02)00180-4[Crossref]
  • [54] M. Klimek, Czech. J. Phys. 51, 1348 (2001) http://dx.doi.org/10.1023/A:1013378221617[Crossref]
  • [55] V.E. Tarasov, G.M. Zaslavsky, J. Phys. A. 39, 9797 (2006) http://dx.doi.org/10.1088/0305-4470/39/31/010[Crossref]
  • [56] D. Baleanu, J. Comput. Nonlin. Dyn. 3, 021102 (2008) http://dx.doi.org/10.1115/1.2833586[Crossref]
  • [57] D. Baleanu J.I. Trujillo, Commun. Nonlinear. Sci. 15, 1111 (2010) http://dx.doi.org/10.1016/j.cnsns.2009.05.023[Crossref]
  • [58] D. Baleanu, A.K. Golmankhaneh, A.K. Golmankhaneh, R.R. Nigmatullin, Nonlin. Dyn. 60, 81 (2010) http://dx.doi.org/10.1007/s11071-009-9581-1[Crossref]
  • [59] D. Baleanu, A.K. Golmankhaneh, R.R. Nigmatullin, A.K. Golmankhaneh, Cent. Eur. J. Phys. 8, 120 (2010) http://dx.doi.org/10.2478/s11534-009-0085-x[Crossref]
  • [60] A.K. Golmankhaneh, A.K. Golmankhaneh, D. Baleanu, M.C. Baleanu, Adv. Differ. Equ. 2011, 526472 (2011)
  • [61] Y.E. Ryabov, A. Puzenko, Phys. Rev. B 66, 184201 (2002) http://dx.doi.org/10.1103/PhysRevB.66.184201[Crossref]
  • [62] H. Bateman, A. Erdelyi, Tables of Integral Transform, Vol. 1. (McGraw-Hill, New York, 1954)
  • [63] M. Abramowitz, I.A. Stegun, (Eds.), in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Sec. 5.2, 9th printing, 231 (Dover, New York, 1972)
  • [64] O.P. Agrawal, J. Math. Anal. Appl. 272, 368 (2002) http://dx.doi.org/10.1016/S0022-247X(02)00180-4[Crossref]
  • [65] O.P. Agrawal, J. Phys. A. 40, 6287 (2007) http://dx.doi.org/10.1088/1751-8113/40/24/003[Crossref]
  • [66] R. Gorenflo, J. Loutchko, Y. Luchko, Fract. Calc. Appl. Anal. 5, 491 (2002)
  • [67] L. Accardi, Y.G. Lu, I.V. Volovich, Quantum Theory and Its Stochastic Limit, (Springer Verlag, New York, 2002)
  • [68] S. Attal, A. Joye, C.A. Pillet, (Eds.), Open Quantum Systems: The Markovian Approach, (Springer, 2006)
  • [69] E.B. Davies, Quantum Theory of Open Systems, (Academic Press, London, 1976)
  • [70] R.S. Ingarden, A. Kossakowski, M. Ohya, Information Dynamics and Open Systems: Classical and Quantum Approach, (Kluwer, New York, 1997)
  • [71] V.E. Tarasov, Quantum Mechanics of Non-Hamiltonian and Dissipative Systems, (Elsevier, Amsterdam, Boston, London, New York, 2008)
  • [72] H.P. Breuer, F. Petruccione, Theory of Open Quantum Systems, (Oxford University Press, 2002)

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11534-012-0008-0
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.