Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2012 | 10 | 1 | 116-123

Article title

A theoretical forecast of the hydrogen bond changes in the electronic excited state for BN and its derivatives

Content

Title variants

Languages of publication

EN

Abstracts

EN
The relationship between electronic spectral shifts and hydrogen-bonding dynamics in electronically excited states of the hydrogen-bonded complex is put forward. Hydrogen bond strengthening will induce a redshift of the corresponding electronic spectra, while hydrogen bond weakening will cause a blueshift. Time-dependent density function theory (TDDFT) was used to study the excitation energies in both singlet and triplet electronically excited states of Benzonitrile (BN), 4-aminobenzonitrile (ABN), and 4-dimethylaminobenzonitrile (DMABN) in methanol solvents. Only the intermolecular hydrogen bond C≡N...H-O was involved in our system. A fairly accurate forecast of the hydrogen bond changes in lowlying electronically excited states were presented in light of a very thorough consideration of their related electronic spectra. The deduction we used to depict the trend of the hydrogen bond changes in excited states could help others understand hydrogen-bonding dynamics more effectively.

Publisher

Journal

Year

Volume

10

Issue

1

Pages

116-123

Physical description

Dates

published
1 - 2 - 2012
online
3 - 12 - 2011

Contributors

author
  • State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, Liaoning, China
author
  • State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, Liaoning, China
author
  • State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, Liaoning, China
author
  • State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, Liaoning, China
author
  • State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, Liaoning, China

References

  • [1] K.-L. Han, G.-J. Zhao, Hydrogen bonding and transfer in the excited state (John Wiley & Sons Ltd, Chichester, UK, 2010) http://dx.doi.org/10.1002/9780470669143[Crossref]
  • [2] Y. Yamada, N. Mikami, T. Ebata, P. Natl. Acad. Sci. USA 105, 12690 (2008) http://dx.doi.org/10.1073/pnas.0800354105[Crossref]
  • [3] M. K. Shukla, J. J. Leszczynski, J. Phys. Chem. B 112, 5139 (2008) http://dx.doi.org/10.1021/jp7100557[Crossref]
  • [4] K. S. Kim, K. S. Oh, J. Y. Lee, P. Natl. Acad. Sci. USA 97, 6373 (2000) http://dx.doi.org/10.1073/pnas.97.12.6373[Crossref]
  • [5] H. L. Liu, G Guo, Cent. Eur. J. Phys. 9, 1261 (2011) http://dx.doi.org/10.2478/s11534-011-0028-1[Crossref]
  • [6] R. Jimenez, G. R. Fleming, P. V. Kumar, M. Maroncelli, Nature 369, 471 (1994) http://dx.doi.org/10.1038/369471a0[Crossref]
  • [7] V. P. Zhdanov, Cent. Eur. J. Phys. 9, 909 (2011) http://dx.doi.org/10.2478/s11534-010-0104-y[Crossref]
  • [8] S. B. Suh et al., J. Am. Chem. Soc. 126, 2186 (2004) http://dx.doi.org/10.1021/ja037607a[Crossref]
  • [9] V. P. Zhdanov, Cent. Eur. J. Phys. 9, 1366 (2011) http://dx.doi.org/10.2478/s11534-011-0054-z[Crossref]
  • [10] D. Laage, I. Burghardt, T. Sommerfeld, J. T. Hynes, Chemphyschem 4, 61 (2003) http://dx.doi.org/10.1002/cphc.200390009[Crossref]
  • [11] R. L. Mills, Y. Lu, K. Akhtar, Cent. Eur. J. Phys. 8, 318 (2010) http://dx.doi.org/10.2478/s11534-009-0106-9[Crossref]
  • [12] G.-J. Zhao, B. H. Northrop, P. J. Stang, K.-L. Han, J. Phys. Chem. A 114, 3418 (2010)
  • [13] X. J. Peng et al., J. Am. Chem. Soc. 129, 1500 (2007) http://dx.doi.org/10.1021/ja0643319[Crossref]
  • [14] B. Erdinc, F. Soyalp, H. Akkus, Cent. Eur. J. Phys. 9, 1315 (2011) http://dx.doi.org/10.2478/s11534-011-0036-1[Crossref]
  • [15] F. Yu et al., J. Am. Chem. Soc. 133, 11030 (2011) http://dx.doi.org/10.1021/ja202582x[Crossref]
  • [16] M. D. Roberts, Cent. Eur. J. Phys. 8, 915 (2010) http://dx.doi.org/10.2478/s11534-010-0022-z[Crossref]
  • [17] W. Ling, S.-L. Yan, Cent. Eur. J. Phys. 9, 1084 (2011) http://dx.doi.org/10.2478/s11534-010-0050-8[Crossref]
  • [18] H. F. Wang, M. S. Wang, M. L. Xin, E. F. Liu, C. L. Yang, Cent. Eur. J. Phys. 9, 792 (2011) http://dx.doi.org/10.2478/s11534-010-0099-4[Crossref]
  • [19] A. F. Philip, K. T. Eisenman, G. A. Papadantonakis, W. D. Hoff, Biochemistry-Us 47, 13800 (2008) http://dx.doi.org/10.1021/bi801730y[Crossref]
  • [20] L.-C. Zhou et al., J. Photoch. Photobio. A 187, 305 (2007) http://dx.doi.org/10.1016/j.jphotochem.2006.10.027[Crossref]
  • [21] T. T. Ivancevic, Cent. Eur. J. Phys. 8, 737 (2010) http://dx.doi.org/10.2478/s11534-009-0148-z[Crossref]
  • [22] R.-K. Chen et al., J. Mol. Struct. 876, 102 (2008) http://dx.doi.org/10.1016/j.molstruc.2007.05.045[Crossref]
  • [23] T. S. Chu, K. L. Han, Phys. Chem. Chem. Phys. 10, 2431 (2008) http://dx.doi.org/10.1039/b715180b[Crossref]
  • [24] G.-J. Zhao, K.-L. Han, J. Phys. Chem. A 113, 4788 (2009)
  • [25] T. S. Chu, Y. Zhang, K. L. Han, Int. Rev. Phys. Chem. 25, 201 (2006) http://dx.doi.org/10.1080/01442350600677929[Crossref]
  • [26] M. D. Roberts, Cent. Eur. J. Phys. 9, 1016 (2011) http://dx.doi.org/10.2478/s11534-011-0031-6[Crossref]
  • [27] G. J. Zhao et al., J. Phys. Chem. A 115, 6390 (2011)
  • [28] S. Xiao, L. Tang, H. Wang, Cent. Eur. J. Phys. 9, 1077 (2011) http://dx.doi.org/10.2478/s11534-011-0008-5[Crossref]
  • [29] K. L. Han, G.Z. He, J. Photoch. Photobiol. C 8, 55 (2007) http://dx.doi.org/10.1016/j.jphotochemrev.2007.03.002[Crossref]
  • [30] W. Ling, S.-L. Yan, Cent. Eur. J. Phys. 9, 1084 (2011) http://dx.doi.org/10.2478/s11534-010-0050-8[Crossref]
  • [31] G. J. Zhao, K. L. Han, P. J. Stang, J. Chem. Theory Comput. 5, 1955 (2009) http://dx.doi.org/10.1021/ct900216m[Crossref]
  • [32] V. R. Pedireddi, S. Chatterjee, A. Ranganathan, C. N. R. Rao, J. Am. Chem. Soc. 119, 10867 (1997) http://dx.doi.org/10.1021/ja972289z[Crossref]
  • [33] K. L. Han, G. Z. He, N. Q. Lou, J. Chem. Phys. 105, 8699 (1996) http://dx.doi.org/10.1063/1.472651[Crossref]
  • [34] H. Dube et al., Angew. Chem-Ger. Edit. 120, 2638 (2008) http://dx.doi.org/10.1002/ange.200705180[Crossref]
  • [35] H. Dube et al., Angew. Chem. Int. Edit. 47, 2600 (2008) http://dx.doi.org/10.1002/anie.200705180[Crossref]
  • [36] K. Gaal-Nagy, Cent. Eur. J. Phys. 8, 833 (2010) http://dx.doi.org/10.2478/s11534-009-0167-9[Crossref]
  • [37] S. M. Borisov, O. S. Wolfbeis, Chem. Rev. 108, 423 (2008) http://dx.doi.org/10.1021/cr068105t[Crossref]
  • [38] G. F. Wei, W.-C. Qiang, W.-L. Chen, Cent. Eur. J. Phys. 8, 574 (2010) http://dx.doi.org/10.2478/s11534-009-0108-7[Crossref]
  • [39] L. Zhan, K. Hu, Y. Tang, Cent. Eur. J. Phys. 8, 672 (2010) http://dx.doi.org/10.2478/s11534-009-0114-9[Crossref]
  • [40] G.-J. Zhao, K.-L. Han, Chemphyschem 9, 1842 (2008) http://dx.doi.org/10.1002/cphc.200800371[Crossref]
  • [41] G.-J. Zhao, K.-L. Han, J. Phys. Chem. A 111, 2469 (2007)
  • [42] G.-J. Zhao, K.-L. Han, J. Phys. Chem. A 113, 14329 (2009)
  • [43] G.-J. Zhao, K.-L. Han, J. Chem. Phys. 127, 024306 (2007) http://dx.doi.org/10.1063/1.2752808[Crossref]
  • [44] G.-J. Zhao, J.-Y. Liu, L.-C. Zhou, K.-L. Han, J. Phys. Chem. B 111, 8940 (2007)
  • [45] G.-J. Zhao, K.-L. Han, In: A. Sánchez, S. J. Gutierrez, (Eds.), Photochemistry research progress (Nova Science Publishers, New York, 2008) 161
  • [46] G.-J. Zhao, K.-L. Han, Biophys. J. 94, 38 (2008) http://dx.doi.org/10.1529/biophysj.107.113738[Crossref]
  • [47] G.-J. Zhao et al., Chem.-Eur. J. 14, 6935 (2008) http://dx.doi.org/10.1002/chem.200701868[Crossref]
  • [48] S. Chai et al., Phys. Chem. Chem. Phys. 11, 4385 (2009) http://dx.doi.org/10.1039/b816589k[Crossref]
  • [49] G.-J. Zhao, K.-L. Han, J. Comput. Chem. 29, 2010 (2008) http://dx.doi.org/10.1002/jcc.20957[Crossref]
  • [50] G.-J. Zhao, B. H. Northrop, K.-L. Han, P. J. Stang, J. Phys. Chem. A 114, 9007 (2010)
  • [51] J. R. Reimers, L. E. Hall, J. Am. Chem. Soc. 121, 3730 (1999) http://dx.doi.org/10.1021/ja983878n[Crossref]
  • [52] S. S. Andrews, S. G. Boxer, J. Phys. Chem. A 104, 11853 (2000)
  • [53] C. Y. Huang, T. Wang, F. Gai, Chem. Phys. Lett. 371, 731 (2003) http://dx.doi.org/10.1016/S0009-2614(03)00353-1[Crossref]
  • [54] Z. Getahun, C. Y. Huang, T. Wang, B. De Leon, W. F. DeGrado, F. Gai, J. Am. Chem. Soc. 125, 405 (2003) http://dx.doi.org/10.1021/ja0285262[Crossref]
  • [55] K. C. Schultz, L. Supekova, Y. H. Ryu, J. M. Xie, R. Perera, P. G. Schultz, J. Am. Chem. Soc. 128, 13984 (2006) http://dx.doi.org/10.1021/ja0636690[Crossref]
  • [56] S. Mukherjee, P. Chowdhury, W. F. DeGrado, F. Gai, Langmuir 23, 11174 (2007) http://dx.doi.org/10.1021/la701686g[Crossref]
  • [57] J. H. Choi, K. I. Oh, H. Lee, C. Lee, M. Cho, J. Chem. Phys. 128, 134506 (2008) http://dx.doi.org/10.1063/1.2844787[Crossref]
  • [58] C. Bulliard et al., J. Phys. Chem. A 103, 7766 (1999). http://dx.doi.org/10.1021/jp990922s[Crossref]
  • [59] D. J. Aschaffenburg, R. S. Moog, J. Phys. Chem. B 113, 12736 (2009) http://dx.doi.org/10.1021/jp905802a[Crossref]
  • [60] A. Mordzinski, A. L. Sobolewski, D. H. Levy, J. Phys. Chem. A 101, 8221 (1997)
  • [61] A. L. Sobolewski, W. Domcke, Chem. Phys. Lett. 250, 428 (1996) http://dx.doi.org/10.1016/0009-2614(96)00014-0[Crossref]
  • [62] E. Lippert et al., Angew. Chem.-Ger. Edit. 73, 695 (1961) http://dx.doi.org/10.1002/ange.19610732103[Crossref]
  • [63] E. Lippert, W. Rettig, V. Bonacic-Koutecky, F. Heisel, J. A. Miehe, Adv. Chem. Phys. 68, 1 (1987)
  • [64] C. J. Joödicke, H. P. Lüthi, J. Am. Chem. Soc 125, 252 (2003) http://dx.doi.org/10.1021/ja020361+[Crossref]
  • [65] Z. R. Grabowski, K. Rotkiewicz, W. Rettig, Chem. Rev. 103, 3899 (2003) http://dx.doi.org/10.1021/cr940745l[Crossref]
  • [66] J.-S. Yang, K.-L. Liau, C.-M. Wang, C.-Y. Hwang, J. Am. Chem. Soc. 126, 12325 (2004) http://dx.doi.org/10.1021/ja047604d[Crossref]
  • [67] K. A. Zachariasse, S. I. Druzhinin, W. Bosch, R. Machinek, J. Am. Chem. Soc. 126, 1705 (2004) http://dx.doi.org/10.1021/ja037544w[Crossref]
  • [68] A. Köhn, C. Hättig, J. Am. Chem. Soc. 126, 7399 (2004) http://dx.doi.org/10.1021/ja0490572[Crossref]
  • [69] D. Rappoport, F. Furche, J. Am. Chem. Soc. 126, 1277 (2004) http://dx.doi.org/10.1021/ja037806u[Crossref]
  • [70] C. J. Jamorski, M. E. Casida, J. Phys. Chem. B 108, 7132 (2004)
  • [71] A. D. Becke, J. Chem. Phys. 98, 5648 (1993) http://dx.doi.org/10.1063/1.464913[Crossref]
  • [72] A. Schäsfer, C. Huber, R. Ahlrichs, J. Chem. Phys. 100, 5829 (1994) http://dx.doi.org/10.1063/1.467146[Crossref]
  • [73] M. Ray, Y. Nakao, H. Sato, H. Sakaba, S. Sakaki, J. Am. Chem. Soc. 128, 11927 (2006) http://dx.doi.org/10.1021/ja0625374[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11534-011-0073-9
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.