Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2011 | 9 | 6 | 1421-1425

Article title

Characterization of the surface topography and nano-hardness of Cu/Ni multilayer structures

Content

Title variants

Languages of publication

EN

Abstracts

EN
This article describes the results of a study of Cu/Ni multilayer coatings applied on a monocrystalline Si(100) silicon substrate by the deposition magnetron sputtering technique. Composed of 100 bilayers each, the multilayers were differentiated by the Ni sublayer thickness (1.2 to 3 nm), while maintaining the constant Cu sublayer thickness (2 nm). The multilayer coatings were characterized by assessing their surface topography using atomic force microscopy and their mechanical properties with nano-hardness measurements by the Berkovich method. The tests showed that the hardness of multilayers was substantially influenced by the thickness ratio of Cu and Ni sublayers and by surface roughness. The highest hardness and, at the same time, the lowest roughness was exhibited by a multilayer structure with a Cu-to-Ni sublayer thickness ratio of 2:1.5.

Publisher

Journal

Year

Volume

9

Issue

6

Pages

1421-1425

Physical description

Dates

published
1 - 12 - 2011
online
15 - 10 - 2011

Contributors

author
  • Institute of Materials Engineering, Czestochowa University of Technology, al. Armii Krajowej 19, 42-200, Czestochowa, Poland
  • Institute of Materials Engineering, Czestochowa University of Technology, al. Armii Krajowej 19, 42-200, Czestochowa, Poland
author
  • Department of Metallurgy and Materials Engineering, Katholieke Universiteit Leuven, B-3001, Heverlee, Belgium
  • Institute of Materials Engineering, Czestochowa University of Technology, al. Armii Krajowej 19, 42-200, Czestochowa, Poland

References

  • [1] N. T. Loux, N. Savage, Water Air Soil. Poll. 194, 227 (2008) http://dx.doi.org/10.1007/s11270-008-9712-1[Crossref]
  • [2] C. A. Huang, C. Y. Chen, C. C. Hsu, C. S. Lin, Scripta Mater. 57, 61 (2007) http://dx.doi.org/10.1016/j.scriptamat.2007.02.004[Crossref]
  • [3] D. Cheng, Z. Y. Yan, L. Yan, Thin Solid Films 515, 3698 (2007) http://dx.doi.org/10.1016/j.tsf.2006.10.001[Crossref]
  • [4] L. L. Hinchey, D. L. Mills, Phys. Rev. B 33, 3329 (1986) http://dx.doi.org/10.1103/PhysRevB.33.3329[Crossref]
  • [5] K. Sakaue, N. Sano, H. Terauchi, A. Yoshihara, J. Cryst. Growth 150, 1154 (1995) http://dx.doi.org/10.1016/0022-0248(95)80120-2[Crossref]
  • [6] M. N. Baibich, J. M. Broto, A. Fert, F. N. Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, J. Chazelas, Phys. Rev. Lett. 61, 2472 (1988) http://dx.doi.org/10.1103/PhysRevLett.61.2472[Crossref]
  • [7] G. H. Yang, B. Zhao, Y. Gao, F. Pan, Surf. Coat. Tech. 191, 127 (2005) http://dx.doi.org/10.1016/j.surfcoat.2004.02.006[Crossref]
  • [8] H. C. Barsilia, K. S. Rajam, Surf. Coat. Tech. 155, 195 (2002) http://dx.doi.org/10.1016/S0257-8972(02)00008-7[Crossref]
  • [9] B. Kucharska, E. Kulej, J. Kanak, Sol. St. Phen. Vol. 163, 291 (2010) http://dx.doi.org/10.4028/www.scientific.net/SSP.163.291[Crossref]
  • [10] T. Stobiecki, M. Kopcewicz, F. J. Castaño, Solitons and Fractals 10, 2031 (1999) http://dx.doi.org/10.1016/S0960-0779(98)00252-5[Crossref]
  • [11] A. Tokarz, A. Wolkenberg, A. Bochenek, Z. Nitkiewicz, A. Łaszcz, H. Wrzesinska, T. Przesławski, Composites 1, 2 (2001) (in Polish)
  • [12] X. Y. Zhu, X. J. Liu, R. L. Zong, F. Zeng, F. Pan, Mater. Sci. Eng. A 527, 1243 (2010) http://dx.doi.org/10.1016/j.msea.2009.09.058[Crossref]
  • [13] B. Kucharska, E. Kulej, M. Witkowska, Z. Nitkiewicz, Inzynieria Materiałowa 175, 439 (2010)

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11534-011-0055-y
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.