Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2011 | 9 | 2 | 325-329

Article title

Separation of surfactant functionalized single-walled carbon nanotubes via free solution electrophoresis method

Content

Title variants

Languages of publication

EN

Abstracts

EN
This work presents the application of the free solution electrophoresis method (FSE) in the metallic / semiconductive (M/S) separation process of the surfactant functionalized single-walled carbon nanotubes (SWCNTs). The SWCNTs synthesized via laser ablation were purified through high vacuum annealing and subsequent refluxing processes in aqua regia solution. The purified and annealed material was divided into six batches. First three batches were dispersed in anionic surfactants: sodium dodecyl sulfate (SDS), sodium cholate (SC) and sodium deoxycholate (DOC). The next three batches were dispersed in cationic surfactants: cetrimonium bromide (CTAB), benzalkonium chloride (BKC) and cetylpyridinium chloride (CPC). All the prepared SWCNTs samples were subjected to FSE separation process. The fractionated samples were recovered from control and electrode areas and annealed in order to remove the adsorbed surfactants on carbon nanotubes (CNTs) surface. The changes of the van Hove singularities (vHS) present in SWCNTs spectra were investigated via UV-Vis-NIR optical absorption spectroscopy (OAS).

Keywords

Publisher

Journal

Year

Volume

9

Issue

2

Pages

325-329

Physical description

Dates

published
1 - 4 - 2011
online
20 - 2 - 2011

Contributors

  • Institute of Chemical and Environment Engineering, West Pomeranian University of Technology, ul. Pułaskiego 10, 70-322, Szczecin, Poland
author
  • Leibniz Institute for Solid State and Materials Research Dresden, Helmholtzstr. 20, 01069, Dresden, Germany
  • Institute of Chemical and Environment Engineering, West Pomeranian University of Technology, ul. Pułaskiego 10, 70-322, Szczecin, Poland
  • Institute of Chemical and Environment Engineering, West Pomeranian University of Technology, ul. Pułaskiego 10, 70-322, Szczecin, Poland

References

  • [1] Y. Miyata, K. Yanagi, Y. Maniwa, H. Kataura, J. Phys. Chem. C 112, 13187 (2008) http://dx.doi.org/10.1021/jp804006f[Crossref]
  • [2] W. Wang et al., J. Am. Chem. Soc. 130, 1415 (2008) http://dx.doi.org/10.1021/ja0768035[Crossref]
  • [3] D. Chattopadhyay, I. Galeska, F. Papadimiytrakopoulos, J. Am. Chem. Soc. 125, 3370 (2003) http://dx.doi.org/10.1021/ja028599l[Crossref]
  • [4] M.S. Strano et al., Science 301, 1519 (2003) http://dx.doi.org/10.1126/science.1087691[Crossref]
  • [5] Y. Maeda et al., J. Am. Chem. Soc. 127, 10287 (2005) http://dx.doi.org/10.1021/ja051774o[Crossref]
  • [6] S. Campidelli, M. Menegheti, M. Prato, Small 3, 1672 (2007) http://dx.doi.org/10.1002/smll.200700394[Crossref]
  • [7] Y. Maeda et al., Carbon 46, 1563 (2008) http://dx.doi.org/10.1016/j.carbon.2008.06.057[Crossref]
  • [8] Y. Miyata et al., J. Phys. Chem. 110, 25 (2006) http://dx.doi.org/10.1021/jp055692y[Crossref]
  • [9] M.S. Arnold, A.A. Green, J.F. Hulvat, S.I. Stupp, M.C. Hersam, Nat. Nanotechnol. 1, 60 (2006) http://dx.doi.org/10.1038/nnano.2006.52[Crossref]
  • [10] K. Yanagi, Y. Miyata, H. Kataura, Appl. Phys. Express 1, 034001 (2008) http://dx.doi.org/10.1143/APEX.1.034001[Crossref]
  • [11] S. Niyogi et al., J. Am. Chem. Soc. 123, 733 (2001) http://dx.doi.org/10.1021/ja0024439[Crossref]
  • [12] A.A. Vetcher et al., Nanotechnology 17, 4263 (2006) http://dx.doi.org/10.1088/0957-4484/17/16/043[Crossref]
  • [13] W.J. Kim, M.L. Usrey, M.S. Strano, Chem. Mater. 19, 1571 (2007) http://dx.doi.org/10.1021/cm061862n[Crossref]
  • [14] H. Peng, N. T. Alvarez, C. Kittrell, R. H. Hauge, H. K. J. Schmidt, J. Am. Chem. Soc. 128, 8396 (2006) http://dx.doi.org/10.1021/ja0621501[Crossref]
  • [15] T. Tanaka, H. Jin, Y. Miyata, H. Kataura, Appl. Phys. Express 1, 114001 (2008) http://dx.doi.org/10.1143/APEX.1.114001[Crossref]
  • [16] T. Tanaka et al., NanoLett. 9, 1497 (2009) http://dx.doi.org/10.1021/nl8034866[Crossref]
  • [17] W. Wenseleers et al., Adv. Funct. Mater. 14, 1105 (2004) http://dx.doi.org/10.1002/adfm.200400130[Crossref]
  • [18] R.E. Akins. P.M. Levin, R.S. Tuan, Anal. Biochem. 202, 172 (1992) http://dx.doi.org/10.1016/0003-2697(92)90224-U[Crossref]
  • [19] X.G. Wang, Y.J. Fan, J. Appl. Electrochem. 39, 1451 (2009) http://dx.doi.org/10.1007/s10800-009-9824-3[Crossref]
  • [20] K. Yang, Q. Jing, W. Wu, L. Zhu, B. Xing, Environ. Sci. Technol. 44, 681 (2010) http://dx.doi.org/10.1021/es902173v[Crossref]
  • [21] S. Bandow et al., J. Phys. Chem. B101, 8839 (1997)
  • [22] E. Mizoguti et al., Chem. Phys. Lett. 321, 297 (2000) http://dx.doi.org/10.1016/S0009-2614(00)00371-7[Crossref]
  • [23] O. Jost et al., Appl. Phys. Lett. 75, 2217 (1999) http://dx.doi.org/10.1063/1.124969[Crossref]
  • [24] H. Kuzmany et al., Eur. Phys. J. B 22, 307 (2001) http://dx.doi.org/10.1007/s100510170108[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11534-010-0083-z
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.