Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2011 | 9 | 3 | 740-750

Article title

Generation of vorticity motion by sound in a chemically reacting gas and inversion of acoustic streaming in the non-equilibrium regime

Content

Title variants

Languages of publication

EN

Abstracts

EN
Nonlinear stimulation of the vorticity mode caused by losses in the momentum of sound in a chemically reacting gas is considered. The instantaneous dynamic equation for the vorticity mode is derived. It includes a quadratic nonlinear acoustic source, which reflects the fact that the reason for the interaction between sound and the vorticity mode is nonlinear. Both periodic and aperiodic sound may be considered as the origin of the vorticity flow. The equation governing the mean flow (the acoustic streaming) in the field of periodic sound is also derived. In the non-equilibrium regime of a chemical reaction, there may exist streaming vortices whose direction of rotation is opposite to that of the vortices in the standard thermoviscous flows. For periodic sound, this is illustrated by an example. The theory and the example describe both equilibrium and non-equilibrium chemical reactions.

Publisher

Journal

Year

Volume

9

Issue

3

Pages

740-750

Physical description

Dates

published
1 - 6 - 2011
online
26 - 2 - 2011

Contributors

  • Faculty of Applied Physics and Mathematics, Gdansk University of Technology, ul. Narutowicza 11/12, 80-233, Gdansk, Poland
author
  • Faculty of Applied Physics and Mathematics, Gdansk University of Technology, ul. Narutowicza 11/12, 80-233, Gdansk, Poland

References

  • [1] M.J. Lighthill, J. Sound. Vib. 61, 391 (1978) http://dx.doi.org/10.1016/0022-460X(78)90388-7[Crossref]
  • [2] O.V. Rudenko, S.I. Soluyan, Theoretical foundations of nonlinear acoustics, Plenum, New York (1977)
  • [3] W.L. Nyborg, In: M. Hamilton, D. Blackstock (Eds.), Nonlinear Acoustics (Academic Press, New York, 1998) 207
  • [4] Ya.B. Zeldovich, Yu.P. Raizer, Physics of shock waves and high temperature hydrodynamic phenomena (Academic Press, New York, 1966)
  • [5] A.I. Osipov, A.V. Uvarov, Sov. Phys. Uspekhi 35, 903 (1992) http://dx.doi.org/10.1070/PU1992v035n11ABEH002275[Crossref]
  • [6] J.F. Clarke, M. McChesney, The dynamics of real gases (Butterworths, London, 1964)
  • [7] N.E. Molevich, Acoust. Phys.+ 48, 209 (2002) http://dx.doi.org/10.1134/1.1460958[Crossref]
  • [8] S. Makarov, M. Ochmann, Acustica 82, 579 (1996)
  • [9] Q. Qi, J. Acoust. Soc. Am. 94, 1090 (1993) http://dx.doi.org/10.1121/1.406956[Crossref]
  • [10] L. Menguy, J. Gilbert, Acustica 86, 249 (2000)
  • [11] G.E. Abouseif, T.-Y. Toong, Symposium (International) on Combustion 17, 1341 (1979) http://dx.doi.org/10.1016/S0082-0784(79)80126-5[Crossref]
  • [12] N.E. Molevich, Acoust. Phys.+ 49, 229 (2003)
  • [13] A. Perelomova, Acta Acust. 89, 754 (2003)
  • [14] A. Perelomova, Phys. Lett. A 357, 42 (2006) http://dx.doi.org/10.1016/j.physleta.2006.04.014[Crossref]
  • [15] A. Perelomova, Can. J. Phys. 88, 293 (2010) http://dx.doi.org/10.1139/P10-011[Crossref]
  • [16] E.V. Koltsova, A.I. Osipov, A.V. Uvarov, Sov. Phys. Acoust.+, 40, 969 (1994)
  • [17] N.E. Molevich, Acoust. Phys.+ 47, 102 (2001) http://dx.doi.org/10.1134/1.1340086[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11534-010-0077-x
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.