Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2010 | 8 | 6 | 864-872

Article title

Non-coding RNAs and a layered architecture of genetic networks

Content

Title variants

Languages of publication

EN

Abstracts

EN
In eukaryotic cells, protein-coding sequences constitute a relatively small part of the genome. The rest of the genome is transcribed to non-coding RNAs (ncRNAs). Such RNAs form the cornerstone of a regulatory network that operates in parallel with the protein network. Their biological functions are based primarily on the ability to pair with and deactivate target messenger RNAs (mRNAs). To clarify the likely role of ncRNAs in complex genetic networks, we present and comprehensively analyze a kinetic model of one of the key counterparts of the network architectures. Specifically, the genes transcribed to ncRNAs are considered to interplay with a hierarchical two-layer set of genes transcribed to mRNAs. The genes forming the bottom layer are regulated from the top and negatively self-regulated. If the former regulation is positive, the dependence of the RNA populations on the governing parameters is found to be often non-monotonous. Specifically, the model predicts bistability. If the regulation is negative, the dependence of the RNA populations on the governing parameters is monotonous. In particular, the population of the mRNAs, corresponding to the genes forming the bottom layer, is nearly constant.

Publisher

Journal

Year

Volume

8

Issue

6

Pages

864-872

Physical description

Dates

published
1 - 12 - 2010
online
5 - 9 - 2010

References

  • [1] F. Crick, Nature 227, 561 (1970) http://dx.doi.org/10.1038/227561a0[Crossref]
  • [2] B. Alberts et al., Molecular Biology of the Cell (Garland, New York, 2002)
  • [3] K. M. Herbert, W. J. Greenleaf, S. M. Block, Annu. Rev. Biochem. 77, 149 (2008) http://dx.doi.org/10.1146/annurev.biochem.77.073106.100741[Crossref]
  • [4] J. T. Wade, K. Struhl, Curr. Opin. Genet. Dev. 18, 130 (2008) http://dx.doi.org/10.1016/j.gde.2007.12.008[Crossref]
  • [5] N. J. Fuda, M. B. Ardehali, J. T. Lis, Nature 461, 186 (2009) http://dx.doi.org/10.1038/nature08449[Crossref]
  • [6] A. Korostelev, D. N. Ermolenko, H. F. Noller, Curr. Opin. Chem. Biol. 12, 674 (2008) http://dx.doi.org/10.1016/j.cbpa.2008.08.037[Crossref]
  • [7] R. A. Marshall, C. E. Aitken, M. Dorywalska, J. D. Puglisi, Ann. Rev. Biochem. 77, 177 (2008) http://dx.doi.org/10.1146/annurev.biochem.77.070606.101431[Crossref]
  • [8] J. B. Munro, K. Y. Sanbonmatsu, C. M. T. Spahn, S. C. Blanchard, Trends Biochem. Sci. 34, 390 (2009) http://dx.doi.org/10.1016/j.tibs.2009.04.004[Crossref]
  • [9] C. E. Holt, S. L. Bullock Science 326, 1212 (2009) http://dx.doi.org/10.1126/science.1176488[Crossref]
  • [10] H. D. Lipshitz, Nature Rev. Mol. Cell Bio. 10, 509 (2009) http://dx.doi.org/10.1038/nrm2730[Crossref]
  • [11] L. Shapiro, H. H. McAdams, R. Losick, Science 326, 1225 (2009) http://dx.doi.org/10.1126/science.1175685[Crossref]
  • [12] M. Kaern, T. C. Elston, W. J. Blake, J. J. Collins, Nature Rev. Genet. 6, 451 (2005) http://dx.doi.org/10.1038/nrg1615[Crossref]
  • [13] J. Paulsson, Phys. Life Rev. 2, 157 (2005) http://dx.doi.org/10.1016/j.plrev.2005.03.003[Crossref]
  • [14] G. Tiana, S. Krishna, S. Pigolotti, M. H. Jensen, K. Sneppen, Phys. Biol. 4, R1 (2007) http://dx.doi.org/10.1088/1478-3975/4/2/R01[Crossref]
  • [15] D. Kulasiri, L. K. Nguyen, S. Samarasinghe, Z. Xie, Curr. Bioinform. 3, 197 (2008) http://dx.doi.org/10.2174/157489308785909214[Crossref]
  • [16] A. Raj, A. van Oudenaarden, Cell 135, 216 (2008) http://dx.doi.org/10.1016/j.cell.2008.09.050[Crossref]
  • [17] S. Bornholdt, Science 310, 449 (2005) http://dx.doi.org/10.1126/science.1119959[Crossref]
  • [18] G. Karlebach, R. Shamir, Nature Rev. Mol. Cell Bio. 9, 771 (2008)
  • [19] Y. Bar-Yam, D. Harmon, B. de Bivort, Science 323, 1016 (2009) http://dx.doi.org/10.1126/science.1163225[Crossref]
  • [20] M. C. Lagomarsino, B. Bassetti, G. Castellani, D. Remondini, Mol. Biosyst. 5, 335 (2009) http://dx.doi.org/10.1039/b816841p[Crossref]
  • [21] T. R. Mercer, M. E. Dinger, J. S. Mattick, Nature Rev. Genet. 10, 155 (2009) http://dx.doi.org/10.1038/nrg2521[Crossref]
  • [22] J. Whitehead, G. K. Pandey, C. Kanduri, Biochim. Biophys. Acta 1790, 936 (2009)
  • [23] J. E. Wilusz, H. Sunwoo, D. L. Spector, Gene. Dev. 23, 1494 (2009) http://dx.doi.org/10.1101/gad.1800909[Crossref]
  • [24] D. P. Bartel, Cell 136, 215 (2009) http://dx.doi.org/10.1016/j.cell.2009.01.002[Crossref]
  • [25] M. Ghildiyal, P. D. Zamore, Nature Rev. Genet. 10, 94 (2009) http://dx.doi.org/10.1038/nrg2504[Crossref]
  • [26] V. N. Kim, J. Han, M. C. Siomi, Nature Rev. Mol. Cell. Bio. 10, (2009) 126. http://dx.doi.org/10.1038/nrm2632[Crossref]
  • [27] K. K. H. Farh et al., Science 310, 1817 (2005) http://dx.doi.org/10.1126/science.1121158[Crossref]
  • [28] E. Barbarotto, T. G. Schmittgen, G. A. Calin, Int. J. Cancer 122, 969 (2008) http://dx.doi.org/10.1002/ijc.23343[Crossref]
  • [29] F. C. Lynn, Trends Endocrin. Met. 20, 452 (2009) http://dx.doi.org/10.1016/j.tem.2009.05.007[Crossref]
  • [30] J. Q. Yin, R. C. Zhao, K. V. Morris, Trends Biotechnol. 26, 70 (2008) http://dx.doi.org/10.1016/j.tibtech.2007.11.007[Crossref]
  • [31] M. Selbach, B. Schwanhausser, N. Thierfelder, Z. Fang, R. Khanin, N. Rajewsky, Nature 455, 58 (2008) http://dx.doi.org/10.1038/nature07228[Crossref]
  • [32] D. Baek et al., Nature 455, 64 (2008) http://dx.doi.org/10.1038/nature07242[Crossref]
  • [33] A. Bethke, N. Fielenbach, Z. Wang, D. J. Mangelsdorf, A. Antebi, Science 324, 95 (2009) http://dx.doi.org/10.1126/science.1164899[Crossref]
  • [34] E. Levine, T. Hwa, Curr. Opin. Microbiol. 11, 574 (2008) http://dx.doi.org/10.1016/j.mib.2008.09.016[Crossref]
  • [35] V. P. Zhdanov, Mol. Biosyst. 5, 638 (2009) http://dx.doi.org/10.1039/b808095j[Crossref]
  • [36] V. P. Zhdanov, Biophysical Reviews and Letters 4, 267 (2009) http://dx.doi.org/10.1142/S1793048009001034[Crossref]
  • [37] V. P. Zhdanov, J. Phys. A-Math. Theor. 41, 285101 (2008) http://dx.doi.org/10.1088/1751-8113/41/28/285101[Crossref]
  • [38] V. P. Zhdanov, JETP Lett. 88, 466 (2008) http://dx.doi.org/10.1134/S0021364008190120[Crossref]
  • [39] V. P. Zhdanov, Biosystems 95, 75 (2009) http://dx.doi.org/10.1016/j.biosystems.2008.07.002[Crossref]
  • [40] V. P. Zhdanov, Physica A 389, 887 (2010) http://dx.doi.org/10.1016/j.physa.2009.11.028[Crossref]
  • [41] V. P. Zhdanov, Chem. Phys. Lett. 458, 359 (2008) http://dx.doi.org/10.1016/j.cplett.2008.04.111[Crossref]
  • [42] A. Nandi, C. Vaz, A. Bhattacharya, R. Ramaswamy, BMC Syst. Biol. 3, 45 (2009) http://dx.doi.org/10.1186/1752-0509-3-45[Crossref]
  • [43] J. Shen, Z. Liu, W. Zheng, F. Xu, L. Chen, Physica A 388, 2995 (2009) http://dx.doi.org/10.1016/j.physa.2009.03.032[Crossref]
  • [44] M. Aldana, Physica D 185, 45 (2003) http://dx.doi.org/10.1016/S0167-2789(03)00174-X[Crossref]
  • [45] H. -W. Ma, J. Buer, A. -P. Zeng, BMC Bioinformatics 5, 199 (2004) http://dx.doi.org/10.1186/1471-2105-5-199[Crossref]
  • [46] A. Martynez-Antonio, S. C. Janga, D. Thieffry, J. Mol. Biol. 381, 238 (2008) http://dx.doi.org/10.1016/j.jmb.2008.05.054[Crossref]
  • [47] P. Guptasarma, Bioessays 17, 987 (1995) http://dx.doi.org/10.1002/bies.950171112[Crossref]
  • [48] S. Ghaemmaghami et al., Nature 425, 737 (2003) http://dx.doi.org/10.1038/nature02046[Crossref]
  • [49] M. Davidich, S. Bornholdt, J. Theor. Biol. 255, 269 (2008) http://dx.doi.org/10.1016/j.jtbi.2008.07.020[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11534-010-0025-9
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.