Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2010 | 8 | 2 | 207-220

Article title

Photothermal methods for determination of thermal properties of bulk materials and thin films

Content

Title variants

Languages of publication

EN

Abstracts

EN
Information on the thermal properties of materials is very important both in fundamental physical research and in engineering applications. The development of materials with desirable heat transport properties requires methods for their experimental determination. In this paper basic concepts of the measurement of parameters describing the heat transport in solids are discussed. Attention is paid to methods utilizing nonstationary temperature fields, especially to photothermal methods in which the temperature disturbance in the investigated sample is generated through light absorption. Exemplary photothermal measuring techniques, which can be realized using common experimental equipment, are described in detail. It is shown that using these techniques it is possible to determine the thermal diffusivity of bulk transparent samples, opaque and semi-transparent plate-form samples, and the thermal conductivity of thin films deposited on thick substrates. Results of the investigation of thermal diffusivity of the ground in the polar region, which is based on the analysis of the propagation of the thermal wave generated by sun-light, are also presented. Based on chosen examples one can state that photothermal techniques can be used for determination of the thermal properties of very different materials.

Publisher

Journal

Year

Volume

8

Issue

2

Pages

207-220

Physical description

Dates

published
1 - 4 - 2010
online
30 - 1 - 2010

Contributors

  • Institute of Physics, Silesian University of Technology, Gliwice, Poland
  • Institute of Physics, Silesian University of Technology, Gliwice, Poland
author
  • Institute of Physics, Silesian University of Technology, Gliwice, Poland

References

  • [1] C. Kittel, Introduction to solid state physics (John Wiley and Sons, New York, Chichester, 1996)
  • [2] P. K. Schelling, L. Shi, K. E. Goodson, Mater. Today 6, 30 (2005) http://dx.doi.org/10.1016/S1369-7021(05)70935-4[Crossref]
  • [3] U. Schulz et al., Ceram. Eng. Sci. Proc. 25, 375 (2004) http://dx.doi.org/10.1002/9780470291191.ch57[Crossref]
  • [4] J. Bodzenta, Thermal waves in investigations of solids (Silesian University of Technology, Gliwice, Poland, 1999)
  • [5] H. S. Carslaw, J. C. Jaeger, Conduction of heat in solids (Oxford Science Publications, New York, 1986)
  • [6] ASTM E1225-04: Standard Test Method for Thermal Conductivity of Solids by Means of the Guarded-Comparative-Longitudinal Heat Flow Technique
  • [7] ASTM C518-04: Standard Test Method for Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter Apparatus
  • [8] ASTM E1530-04:Standard Test Method for Evaluating the Resistance to Thermal Transmission of Materials by the Guarded Heat Flow Meter Technique
  • [9] ASTM C177-04: Standard Test Method for Steady-State Heat Flux Measurements and Thermal Transmission Properties by Means of the Guarded-Hot-Plate Apparatus
  • [10] ISO 8302:1991 Thermal insulation - Determination of steady-state thermal resistance and related properties - Guarded hot plate apparatus
  • [11] W. J. Parker, R. J. Jenkins, C. P. Butler, G. L. Abbott, J. Appl. Phys. 32, 1679 (1961) http://dx.doi.org/10.1063/1.1728417[Crossref]
  • [12] ASTM E1461-07: Standard Test Method for Thermal Diffusivity by the Flash Method
  • [13] ISO 18755:2005 Fine ceramics (advanced ceramics, advanced technical ceramics) - Determination of thermal diffusivity of monolithic ceramics by laser flash method
  • [14] D. Y. Tzou, Int. J. Heat Mass Tran. 36, 401 (1993) http://dx.doi.org/10.1016/0017-9310(93)80016-N[Crossref]
  • [15] A. Mandelis, K. F. Leung, J. Opt. Soc. Am. A 8, 186 (1991) http://dx.doi.org/10.1364/JOSAA.8.000186[Crossref]
  • [16] J. Bodzenta, Chaos, Solitons and Fractals 10, 2087 (1999) http://dx.doi.org/10.1016/S0960-0779(98)00250-1[Crossref]
  • [17] C. A. Paddock, G. L. Eesley, J. Appl. Phys. 60, 285 (1986) http://dx.doi.org/10.1063/1.337642[Crossref]
  • [18] D. G. Cahill, Rev. Sci. Instrum. 75, 5119 (2004) http://dx.doi.org/10.1063/1.1819431[Crossref]
  • [19] D. G. Cahill, K. Goodson, A. Majumdar, J. Heat Transf. 124, 223 (2002) http://dx.doi.org/10.1115/1.1454111[Crossref]
  • [20] A. C. Boccara, D. Fournier, J. Badoz, Appl. Phys. Lett. 36, 130 (1980) http://dx.doi.org/10.1063/1.91395[Crossref]
  • [21] J. C. Murphy, L. C. Aamodt, J. Appl. Phys. 51, 4580 (1980) http://dx.doi.org/10.1063/1.328350[Crossref]
  • [22] A. L. Glazov, K. L. Muratikov, Tech. Phys.+ 38, 344 (1993)
  • [23] D. Korte Kobylinska, R. J. Bukowski, B. Burak, J. Bodzenta, S. Kochowski, J. Appl. Phys. 100, 063501 (2006) http://dx.doi.org/10.1063/1.2337257[Crossref]
  • [24] L. C. Aamodt, J. C. Murphy, J. Appl. Phys. 52, 4903 (1981) http://dx.doi.org/10.1063/1.329451[Crossref]
  • [25] J. Bodzenta, W. Hofman, M. Gała, T. Łukasiewicz, M. Pyka, J. Phys. IV 129, 195 (2005)
  • [26] J. Bodzenta, M. Pyka, J. Phys. IV 137, 259 (2006)
  • [27] J. Bodzenta, A. Kazmierczak-Bałata, T. Łukasiewicz, M. Pyka, Eur. Phys. J. Spec. Top. 153, 135 (2008) http://dx.doi.org/10.1140/epjst/e2008-00411-y[Crossref]
  • [28] J. Bodzenta, A. Kazmierczak-Bałata, K. Wokulska, J. Kucytowski, T. Łukasiewicz, W. Hofman, Appl. Optics 48, C46 (2009) http://dx.doi.org/10.1364/AO.48.000C46[Crossref]
  • [29] J. Bodzenta et al., Dent. Mater. 22, 617 (2006) http://dx.doi.org/10.1016/j.dental.2005.05.016[Crossref]
  • [30] D. R. Lide, CRC Handbook of Chemistry and Physics, 84th edition (CRC Press, Boca Raton, Florida, 2008)
  • [31] J. Bodzenta, J. Mazur, R. Bukowski, Z. Kleszczewski, Proc. SPIE 2643, 286 (1995) http://dx.doi.org/10.1117/12.222756[Crossref]
  • [32] J. Bodzenta, A. Kazmierczak-Bałata, J. Phys. IV 137, 245 (2006)
  • [33] J. Bodzenta et al., Eur. Phys. J.-Spec. Top. 153, 79 (2008) http://dx.doi.org/10.1140/epjst/e2008-00397-4[Crossref]
  • [34] J. Bodzenta, J. Mazur, Z. Kleszczewski, Journal of Chemical Vapor Deposition 5, 288 (1997)
  • [35] J. Bodzenta, B. Burak, A. Jagoda, B. Stanczyk, Diam. Relat. Mater. 14, 1169 (2005) http://dx.doi.org/10.1016/j.diamond.2005.01.016[Crossref]
  • [36] J. Mazur, P. Dolnicki, J. Phys. IV 109, 59 (2003)

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11534-009-0133-6
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.