Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2010 | 8 | 1 | 57-60

Article title

Germanium segregation in CVD grown SiGe layers

Content

Title variants

Languages of publication

EN

Abstracts

EN
A 2D layer of spherical, crystalline Ge nanodots embedded in a SiO2 layer was formed by low pressure chemical vapour deposition combined with furnace oxidation and rapid thermal annealing. The samples were characterized structurally by using transmission electron microscopy and Rutherford back scattering spectrometry, as well as electrically by measuring C-V and I-V characteristics. It was found that formation of a high density Ge dots took place due to oxidation induced Ge segregation. The dots were situated in the SiO2 at the average distance 5–6 nm from the substrate. Strong evidence of charge storage effect in the crystalline Ge-nanodot layer was demonstrated by the hysteresis behavior of the high-frequency C-V curves.

Contributors

  • Belarusian State University, prosp. Nezavisimosti, 4, 220030, Minsk, Belarus
author
  • Belarusian State University, prosp. Nezavisimosti, 4, 220030, Minsk, Belarus

References

  • [1] L. Rebohle, J. von Borany, H. Fröb, W. Skorupa, Appl. Phys. B 71, 131 (2000) http://dx.doi.org/10.1007/PL00006966[Crossref]
  • [2] J. de Blauwe, IEEE T. Nanotechnol. 1, 72 (2002) http://dx.doi.org/10.1109/TNANO.2002.1005428[Crossref]
  • [3] S. Tiwari et al., Appl. Phys. Lett. 68, 1377 (1996) http://dx.doi.org/10.1063/1.116085[Crossref]
  • [4] S. Tiwari, F. Rana, K. Chan, L. Shi, H. Hanafi, Appl. Phys. Lett. 69, 1232 (1996) http://dx.doi.org/10.1063/1.117421[Crossref]
  • [5] P. Normand et al., Appl. Phys. Lett. 83, 168 (2003) http://dx.doi.org/10.1063/1.1588378[Crossref]
  • [6] V. Beyer, J. von Borany, Phys. Rev. B 77, 014107 (2008) http://dx.doi.org/10.1103/PhysRevB.77.014107[Crossref]
  • [7] T. Baron et al., Appl. Phys. Lett. 83, 1444 (2003) http://dx.doi.org/10.1063/1.1604471[Crossref]
  • [8] W. K. Choi et al., Appl. Phys. Lett. 80, 2014 (2002) http://dx.doi.org/10.1063/1.1459760[Crossref]
  • [9] A. Kanjilal et al., Appl. Phys. Lett. 82, 1212 (2003) http://dx.doi.org/10.1063/1.1555709[Crossref]
  • [10] A. Kanjilal et al., Appl. Phys. A 81, 363 (2005) http://dx.doi.org/10.1007/s00339-004-2924-3[Crossref]
  • [11] H. Fukuda, T. Kobayashi, T. Endoh, Y. Ueda, Appl. Surf. Sci. 776, 130 (1998)
  • [12] H. Fukuda et al., J. Appl. Phys. 90, 3524 (2001) http://dx.doi.org/10.1063/1.1399024[Crossref]
  • [13] B. E. Deal, A. S. Grove, J. Appl. Phys. 36, 3770 (1965) http://dx.doi.org/10.1063/1.1713945[Crossref]
  • [14] H. K. Liou, P. Mei, U. Gennser, E. S. Yang, Appl. Phys. Lett. 59, 1200 (1991) http://dx.doi.org/10.1063/1.105502[Crossref]
  • [15] Z. Tan, S. K. Samanta, W. J. Yoo, S. Lee, Appl. Phys. Lett. 86, 013107 (2004) http://dx.doi.org/10.1063/1.1846952[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11534-009-0082-0
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.